

Neo

Emil Eifrem
2008-05-08, API v1.0-rc1-SNAPSHOT

some code snippets

A few brief Neo4j code slides
The following is a few slides from a live
presentation – hopefully the code is self-
explanatory

But if it isn’t, please join the discussion on the
mailing list @ http://lists.neo4j.org

First: how to create a node space

Second: how to traverse that node space

Example: The Matrix social graph

name = “Thomas Anderson”
age = 29

11

name = “The Architect”

4242

CODED_BY

disclosure = public

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

33

1313

KNOWS KNOWS

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

age = 3 days

name = “Trinity”

77

22

KNOWS

KNOWS

K
N

O
W

S

Code (1): Building a node space
NeoService neo = ... // Get factory

// Create Thomas 'Neo' Anderson
Node mrAnderson = neo.createNode();
mrAnderson.setProperty("name", "Thomas Anderson");
mrAnderson.setProperty("age", 29);

// Create Morpheus
Node morpheus = neo.createNode();
morpheus.setProperty("name", "Morpheus");
morpheus.setProperty("rank", "Captain");
morpheus.setProperty("occupation", "Total bad ass");

// Create a relationship representing that they know each other
mrAnderson.createRelationshipTo(morpheus, RelTypes.KNOWS);
// ...create Trinity, Cypher, Agent Smith, Architect similarly

Code (1): Building a node space
NeoService neo = ... // Get factory
Transaction tx = neo.beginTransaction();

// Create Thomas 'Neo' Anderson
Node mrAnderson = neo.createNode();
mrAnderson.setProperty("name", "Thomas Anderson");
mrAnderson.setProperty("age", 29);

// Create Morpheus
Node morpheus = neo.createNode();
morpheus.setProperty("name", "Morpheus");
morpheus.setProperty("rank", "Captain");
morpheus.setProperty("occupation", "Total bad ass");

// Create a relationship representing that they know each other
mrAnderson.createRelationshipTo(morpheus, RelTypes.KNOWS);
// ...create Trinity, Cypher, Agent Smith, Architect similarly

tx.commit(); // Pseudo code, obviously wrap it in try-finally

Traversal: Find Mr Anderson’s friends

name = “Thomas Anderson”
age = 29

11

name = “The Architect”

4242

CODED_BY

disclosure = public

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

33

1313

KNOWS KNOWS

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

age = 3 days

name = “Trinity”

77

22

KNOWS

KNOWS

K
N

O
W

S

What do we want to do?
We want to find all Mr Anderson’s transitive friends

So conceptually, we want to traverse, starting
from the Mr Anderson node...

... breadth first (closest friends first)

... until the end of the network (ALL friends)

... returning all nodes we visit, except the first
one (only Mr Anderson’s friends, not Mr
Anderson himself)

... but only traverse relationships of the KNOWS
type in the OUTGOING direction

Code (2): Traversing a node space

// Instantiate a traverser that returns Mr Anderson's friends
Traverser friendsTraverser = mrAnderson.traverse(

Traverser.Order.BREADTH_FIRST,
StopEvaluator.END_OF_NETWORK,
ReturnableEvaluator.ALL_BUT_START_NODE,
RelTypes.KNOWS,
Direction.OUTGOING);

// Traverse the node space and print out the result
System.out.println("Mr Anderson's friends:");
for (Node friend : friendsTraverser)
{

System.out.printf("At depth %d => %s%n",
friendsTraverser.currentPosition().getDepth(),
friend.getProperty("name"));

}

$ bin/start-neo-example
Mr Anderson's friends:

At depth 1 => Morpheus
At depth 1 => Trinity
At depth 2 => Cypher
At depth 3 => Agent Smith
$

friendsTraverser = mrAnderson.traverse(
 Traverser.Order.BREADTH_FIRST,
 StopEvaluator.END_OF_NETWORK,
 ReturnableEvaluator.ALL_BUT_START_NODE,
 RelTypes.KNOWS,
 Direction.OUTGOING);

name = “Thomas Anderson”
age = 29

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

name = “The Architect”

disclosure = public

age = 3 days

name = “Trinity”

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

77

22

33

1313

4242

11
KNOWS KNOWS CODED_BYKNOWS

KNOWS
K

N
O

W
S

Evolving the domain: Friends in love?

name = “Thomas Anderson”
age = 29

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

name = “The Architect”

disclosure = public

name = “Trinity”

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

77

22

33

1313

4242

11
KNOWS KNOWS CODED_BYKNOWS

KNOWS

K
N

O
W

S

LOVES

What do we want to do?
We’ve now extended the domain with completely
new functionality

Note how we don’t have any predefined
schemas – we could even create the new reltype
dynamically without restarting our app

Conceptually, we want to find everyone amongst
Mr Anderson’s friends who has a crush on someone

So we still want to traverse all Mr Anderson’s
friends (like last time)

But this time we only want to return the nodes that
has an OUTGOING relationship of the LOVES type

Code (3a): Custom traverser

// Create a traverser that returns all “friends in love”
Traverser loveTraverser = mrAnderson.traverse(

Traverser.Order.BREADTH_FIRST,
StopEvaluator.END_OF_NETWORK,
new ReturnableEvaluator()
{

public boolean isReturnableNode(TraversalPosition pos)
{

return pos.currentNode().hasRelationship(
 RelTypes.LOVES, Direction.OUTGOING);

}
},
RelTypes.KNOWS,
Direction.OUTGOING);

Code (3a): Custom traverser

// Traverse the node space and print out the result
System.out.println("Who’s in love?");
for (Node person : loveTraverser)
{

System.out.printf("At depth %d => %s%n",
loveTraverser.currentPosition().getDepth(),
person.getProperty("name"));

}

new ReturnableEvaluator()
{
 public boolean isReturnableNode(
 TraversalPosition pos)
 {
 return pos.currentNode().
 hasRelationship(RelTypes.LOVES,
 Direction.OUTGOING);
 }
},

$ bin/start-neo-example
Who’s in love?

At depth 1 => Trinity
$

name = “Thomas Anderson”
age = 29

name = “Morpheus”
rank = “Captain”
occupation = “Total badass”

name = “The Architect”

disclosure = public

name = “Trinity”

name = “Cypher”
last name = “Reagan”

disclosure = secret
age = 6 months

name = “Agent Smith”
version = 1.0b
language = C++

77

22

33

1313

4242

11
KNOW
S

KNOW
S

CODED_BYKNOWS

KNOWS

K
N

O
W

S
LOVES

Summary
API details

http://api.neo4j.org

Feedback

http://lists.neo4j.org

Download

http://neo4j.org/download

Business

http://neotechnology.com

www.neo4j.org

