

The Neo4j Manual

Tobias Ivarsson
Andreas Kollegger

Peter Neubauer
Johan Svensson

Andrés Taylor
Jim Webber

Edited by Anders Nawroth

The Neo4j Manual
by Tobias Ivarsson, Andreas Kollegger, Peter Neubauer, Johan Svensson, Andrés Taylor, Jim Webber, and Anders Nawroth
Copyright © 2011 Neo Technology

License
This book is presented in open source and licensed through Creative Commons 3.0. You are free to copy, distribute, transmit, and/or adapt the work. This
license is based upon the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your
use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.

Any of the above conditions can be waived if you get permission from the copyright holder.

In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights

• The author’s moral rights

• Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights

Note
For any reuse or distribution, you must make clear to the others the license terms of this work. The best way to do this is with a direct link to
this page: http://creativecommons.org/licenses/by-sa/3.0/ [http://creativecommons.org/licenses/by-sa/3.0/]

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

iii

Table of Contents
Introduction ... vii

1. Who should read this ... vii
2. Neo4j highlights ... vii

I. Reference Documentation ... 1
1. Installation & Deployment ... 2

1.1. Deployment Scenarios ... 2
1.2. System Requirements ... 2
1.3. Installation .. 3
1.4. Upgrading ... 5
1.5. Usage Data Collector ... 6

2. Configuration & Performance .. 8
2.1. Caches in Neo4j ... 8
2.2. JVM Settings ... 12
2.3. Compressed storage of short strings .. 13

3. Transaction management .. 14
3.1. Interaction cycle ... 14
3.2. Isolation levels ... 15
3.3. Default locking behavior ... 15
3.4. Deadlocks ... 15
3.5. Delete semantics .. 16

4. Neo4j Server ... 17
4.1. Server Installation .. 17
4.2. Server Configuration .. 19
4.3. Setup for remote debugging .. 21
4.4. Starting the Neo4j server in high availability mode .. 21
4.5. Server Plugins .. 23
4.6. Tuning the server performance .. 26
4.7. Unmanaged Extensions .. 27

5. Indexing .. 29
5.1. Introduction .. 29
5.2. Create ... 29
5.3. Delete ... 30
5.4. Add ... 30
5.5. Remove .. 31
5.6. Update .. 31
5.7. Search ... 32
5.8. Relationship indexes .. 33
5.9. Scores ... 34
5.10. Configuration and fulltext indexes .. 34
5.11. Extra features for Lucene indexes ... 35
5.12. Batch insertion ... 37

6. Graph Algorithms ... 39
6.1. Introduction .. 39
6.2. Path finding examples ... 39

7. High Availability .. 41
7.1. Architecture .. 41
7.2. Setup and configuration ... 42

The Neo4j Manual

iv

7.3. How Neo4j HA operates ... 44
8. Operations ... 46

8.1. Backup ... 46
8.2. Security .. 47
8.3. Monitoring ... 48

II. Tools ... 54
9. Web Administration .. 55

9.1. Dashboard tab .. 55
9.2. Data tab .. 56
9.3. Console tab .. 57
9.4. The JMX tab .. 57

10. Neo4j Shell ... 58
10.1. Starting the shell .. 58
10.2. Passing options and arguments .. 59
10.3. Enum options ... 59
10.4. Filters ... 59
10.5. Node titles .. 60
10.6. How to use (individual commands) ... 60
10.7. Extending the shell: Adding your own commands .. 63

III. Troubleshooting .. 64
11. Troubleshooting guide .. 65
12. Community support .. 66

A. Manpages ... 67
neo4j .. 68
neo4j-shell ... 70
neo4j-coordinator .. 72
neo4j-coordinator-shell .. 74

v

List of Figures
4.1. Neo4j Coordinator MBeans View ... 22
7.1. Typical setup when running multiple Neo4j instances in HA mode ... 42
8.1. Connecting JConsole to the Neo4j Java process ... 48
8.2. Neo4j MBeans View ... 49
9.1. Web Administration Dashboard .. 55
9.2. Entity charting ... 56
9.3. Status indicator panels ... 56
9.4. Browsing and manipulating data ... 56
9.5. Manipulating data with Gremlin ... 57
9.6. JMX Attributes .. 57

vi

List of Tables
1.1. Neo4j deployment options ... 2
1.2. Neo4j editions .. 4
2.1. Guidelines for heap size .. 13
4.1. neo4j-wrapper.conf JVM tuning properties ... 26
5.1. Lucene indexing configuration parameters .. 34
7.1. HighlyAvailableGraphDatabase configuration parameters .. 44
8.1. MBeans exposed by the Neo4j Kernel .. 49
8.2. MBean Memory Mapping ... 50
8.3. MBean Locking ... 50
8.4. MBean Transactions .. 50
8.5. MBean Cache ... 50
8.6. MBean Configuration .. 50
8.7. MBean Primitive count .. 51
8.8. MBean XA Resources ... 52
8.9. MBean Store file sizes .. 52
8.10. MBean Kernel .. 52
8.11. MBean High Availability .. 53

vii

Introduction
This is a reference manual. The material is practical, technical, and focused on answering specific
questions. It addresses how things work, what to do and what to avoid to successfully run Neo4j in a
production environment. After a brief introduction, each topic area assumes general familiarity as it
addresses the particular details of Neo4j.

The goal is to be thumb-through and rule-of-thumb friendly.

Each section should stand on its own, so you can hop right to whatever interests you. When possible,
the sections distill "rules of thumb" which you can keep in mind whenever you wander out of the
house without this manual in your back pocket.

1. Who should read this
The topics should be relevant to architects, administrators, developers and operations personnel. You
should already know about Neo4j and using graphs to store data. If you are completely new to Neo4j
please check out http://neo4j.org first.

2. Neo4j highlights
As a robust, scalable and high-performance database, Neo4j is suitable for lightweight projects or full
enterprise deployment.

It features:

• true ACID transactions

• high availability

• scales to billions of nodes and relationships

• high speed querying through traversals

Proper ACID behavior is the foundation of data reliability. Neo4j enforces that all mutating operations
occur within a transaction, guaranteeing consistent data. This robustness extends from single instance
embedded graphs to multi-server high availability installations. For details, see Chapter 3, Transaction
management.

Reliable graph storage can easily be added to any application. A property graph can scale in size
and complexity as the application evolves, with little impact on performance. Whether starting new
development, or augmenting existing functionality, Neo4j is only limited by physical hardware.

A single server instance can handle a graph of billions of nodes and relationships. When data
throughput is insufficient, the graph database can be distributed among multiple servers in a high
availability configuration. See Chapter 7, High Availability to learn more.

The graph database storage shines when storing richly-connected data. Querying is performed through
traversals, which can perform millions of "joins" per second.

http://neo4j.org

Part I. Reference Documentation

2

Chapter 1. Installation & Deployment

1.1. Deployment Scenarios
Neo4j can be embedded into your application, run as a standalone server or deployed on several
machines to provide high availability.

Table 1.1. Neo4j deployment options

Single Instance Multiple Instances

Embedded EmbeddedGraphDatabase HighlyAvailableGraphDatabase

Standalone Neo4j Server Neo4j Server high
availability mode

1.1.1. Server

Neo4j is normally accessed as a standalone server, either directly through a REST interface or through
a language-specific driver. More information about Neo4j server is found in Chapter 4, Neo4j Server.
For running the server in high availability mode, see Section 4.4, “Starting the Neo4j server in high
availability mode”.

1.1.2. Embedded

Neo4j can be embedded directly in a server application by including the appropriate
Java libraries. When programming, you can refer to the GraphDatabaseService
[http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/

GraphDatabaseService.html] API. To switch from a single instance to multiple
highly available instances, simply switch from the concrete EmbeddedGraphDatabase
[http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/kernel/

EmbeddedGraphDatabase.html] to the HighlyAvailableGraphDatabase [http://
components.neo4j.org/neo4j-enterprise/1.4.M03/apidocs/org/neo4j/kernel/

HighlyAvailableGraphDatabase.html].

1.2. System Requirements
Memory constrains graph size, disk I/O constrains read/write performance, as always.

1.2.1. CPU

Performance is generally memory or I/O bound for large graphs, and compute bound for graphs which
fit in memory.

Minimum
Intel 486

Recommended
Intel Core i7

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/GraphDatabaseService.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/GraphDatabaseService.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/GraphDatabaseService.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/kernel/EmbeddedGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.4.M03/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.4.M03/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.4.M03/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html
http://components.neo4j.org/neo4j-enterprise/1.4.M03/apidocs/org/neo4j/kernel/HighlyAvailableGraphDatabase.html

Installation & Deployment

3

1.2.2. Memory

More memory allows even larger graphs, but runs the risk of inducing larger Garbage Collection
operations.

Minimum
1GB

Recommended
4-8GB

1.2.3. Disk

Aside from capacity, the performance characteristics of the disk are the most important when selecting
storage.

Minimum
SCSI, EIDE

Recommended
SSD w/ SATA

1.2.4. Filesystem

For proper ACID behavior, the filesystem must support flush (fsync, fdatasync).

Minimum
ext3 (or similar)

Recommended
ext4, ZFS

1.2.5. Software

Neo4j is Java-based.

Java
1.6+

Operating Systems
Linux, Windows XP, Mac OS X

1.3. Installation
Neo4j can be installed as a server, running either as a headless application or system service. For Java
developers, it is also possible to use Neo4j as a library, embedded in your application.

For information on installing Neo4j as a server, see Section 4.1, “Server Installation”.

Installation & Deployment

4

1.3.1. Embedded Installation

The latest release is always available from from http://neo4j.org/download, packaged as part of the
Neo4j server. After selecting the appropriate version for your platform, embed Neo4j in your Java
application, by including the Neo4j library jars in your build. Either take the jar files from the lib
directory of the download, or directly use the artifacts available from Maven Central Repository 1.
Stable and milestone releases are available there.

For information on how to use Neo4j as a dependency with Maven and other dependency
management tools, see the following table:

Table 1.2. Neo4j editions

Edition Dependency Description License

Community org.neo4j:neo4j [http://
search.maven.org/
#search|gav|1|g
%3A%22org.neo4j
%22%20AND%20a
%3A%22neo4j%22]

a high performance,
fully ACID
transactional graph
database

GPLv3

Advanced org.neo4j:neo4j-
advanced [http://
search.maven.org/
#search|gav|1|g
%3A%22org.neo4j
%22%20AND%20a
%3A%22neo4j-
advanced%22]

adding advanced
monitoring

AGPLv3

Enterprise org.neo4j:neo4j-
enterprise [http://
search.maven.org/
#search|gav|1|g
%3A%22org.neo4j
%22%20AND%20a
%3A%22neo4j-
enterprise%22]

adding online backup
and High Availability
clustering

AGPLv3

For more information regarding licensing, see the Licensing Guide [http://neo4j.org/licensing-guide/].

Note

The listed dependeices do not contain the implementation, put pulls it in transitively.

Maven dependency.

<project>

...

 <dependencies>

 <dependency>

1http://repo1.maven.org/maven2/org/neo4j/

http://neo4j.org/download
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-advanced%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-enterprise%22
http://neo4j.org/licensing-guide/
http://neo4j.org/licensing-guide/
http://repo1.maven.org/maven2/org/neo4j/

Installation & Deployment

5

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>${neo4j-version}</version>

 </dependency>

 ...

 </dependencies>

...

</project>

Where ${neo4j-version} is the intended version and the artifactId is one of neo4j, neo4j-
advanced, neo4j-enterprise.

1.4. Upgrading
Normally a properly shutdown Neo4j database can be upgraded directly to a new minor version. A
database can be upgraded from a minor version to the next, e.g. 1.1 –> 1.2, and 1.2 –> 1.3, but you
can not jump directly from 1.1 –> 1.3. The upgrade process is a one way step; databases cannot be
downgraded.

However, some upgrades make significant changes to the database store. Neo4j will refuse to start
when a significant upgrade is required, requiring explicit upgrade configuration.

1.4.1. Normal Upgrade
To perform a normal upgrade (for minor changes to the database store):

1. download the newer version of Neo4j

2. cleanly shutdown the database to upgrade, if it is running

3. startup the database with the newer version of Neo4j

1.4.2. Special Upgrade
To perform a special upgrade (for significant changes to the database store):

1. make sure the database you are upgrading has been cleanly shut down

2. set the Neo4j configuration parameter "allow_store_upgrade=true"

3. start the database

4. the upgrade will happen during startup and the process is done when the database has been
successfully started

5. "allow_store_upgrade=true" configuration parameter should be removed, set to "false" or
commented out

1.4.3. Upgrade 1.3.M03 –> 1.3.M04

Warning

Upgrading from 1.3.M03 –> 1.3.M04 must be done explicitly since store format has
changed between those two versions.

Installation & Deployment

6

The store format, as well as logical log format, have changed between these two versions to allow for
bigger stores.

1.4.4. Upgrade 1.2 –> 1.3

Warning

Upgrading from 1.2 –> 1.3 must be done explicitly since store format has changed between
those two versions.

The store format, as well as logical log format, have changed between these two versions to allow for
bigger stores.

Important

Although id ranges has been increased the space used to store the database will not
increase compared to the previous version.

Upgrading between these two version needs to be performed explicitly using a configuration
parameter at startup (see "Special Upgrade").

Caution

Upgrade cannot be performed if either the number of relationship types or the configured
block size for either the dynamic array store or string store is greater than 65534.

Caution

Indexes created using the old IndexService/LuceneIndexService are no longer accessible
out of the box in 1.3 in favor of the integrated index. An automatic upgrade isn’t possible
so a full rebuild of the index data into the integrated index framework is required.
For reference the legacy index can be downloaded from the Neo4j repository, http://
m2.neo4j.org/org/neo4j/neo4j-legacy-index/

1.4.5. Upgrade 1.1 –> 1.2

Upgrading from Neo4j 1.1 to Neo4j 1.2 is a "normal" upgrade.

1.5. Usage Data Collector
The Neo4j Usage Data Collector is a sub-system that gathers usage data, reporting it to the UDC-
server at udc.neo4j.org. It is easy to disable, and does not collect any data that is confidential. For
more information about what is being sent, see below.

The Neo4j team uses this information as a form of automatic, effortless feedback from the Neo4j
community. We want to verify that we are doing the right thing by matching download statistics with
usage statistics. After each release, we can see if there is a larger retention span of the server software.

The data collected is clearly stated here. If any future versions of this system collect additional data,
we will clearly announce those changes.

http://m2.neo4j.org/org/neo4j/neo4j-legacy-index/
http://m2.neo4j.org/org/neo4j/neo4j-legacy-index/

Installation & Deployment

7

The Neo4j team is very concerned about your privacy. We do not disclose any personally identifiable
information.

1.5.1. Technical Information

To gather good statistics about Neo4j usage, UDC collects this information:

• Kernel version - the build number, and if there are any modifications to the kernel.

• Store id - it is a randomized globally unique id created at the same time a database is created.

• Ping count - UDC holds an internal counter which is incremented for every ping, and reset for every
restart of the kernel.

• Source - this is either "neo4j" or "maven". If you downloaded Neo4j from the Neo4j website, it’s
"neo4j", if you are using Maven to get Neo4j, it will be "maven".

• Java version - the referrer string shows which version of Java is being used.

After startup, UDC waits for ten minutes before sending the first ping. It does this for two reasons;
first, we don’t want the startup to be slower because of UDC, and secondly, we want to keep pings
from automatic tests to a minimum. The ping to the UDC servers is done with a HTTP GET.

1.5.2. How to disable UDC

We’ve tried to make it extremely easy to disable UDC. In fact, the code for UDC is not even included
in the kernel jar but as a completely separate component.

There are three ways you can disable UDC:

1. The easiest way is to just remove the neo4j-udc-*.jar file. By doing this, the kernel will not load
UDC, and no pings will be sent.

2. If you are using Maven, and want to make sure that UDC is never installed in your system, a
dependency element like this will do that:

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>${neo4j-version}</version>

 <exclusions>

 <exclusion>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-udc</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

Where ${neo4j-version} is the Neo4j version in use.

3. Lastly, if you are using a packaged version of Neo4j, and do not want to make any change to
the jars, a system property setting like this will also make sure that UDC is never activated: -
Dneo4j.ext.udc.disable=true.

8

Chapter 2. Configuration & Performance
In order to get optimum performance out of Neo4j for your application there are a few parameters that
can be tweaked. The two main components that can be configured are the Neo4j caches and the JVM
that Neo4j runs in. The following sections describe how to tune these.

2.1. Caches in Neo4j
Neo4j utilizes two different types of caches: A file buffer cache and an object cache. The file buffer
cache caches the storage file data in the same format as it is stored on the durable storage media.
The object cache caches the nodes, relationships and properties in a format that is optimized for high
traversal speeds and transactional mutation.

2.1.1. File buffer cache

Quick info

• The file buffer cache is sometimes called low level cache or file system cache.

• It caches the Neo4j data as stored on the durable media.

• It uses the operating system memory mapping features when possible.

• Neo4j will configure the cache automatically as long as the heap size of the JVM is
configured properly.

The file buffer cache caches the Neo4j data in the same format as it is represented on the durable
storage media. The purpose of this cache layer is to improve both read and write performance. The
file buffer cache improves write performance by writing to the cache and deferring durable write until
the logical log is rotated. This behavior is safe since all transactions are always durably written to the
logical log, which can be used to recover the store files in the event of a crash.

Since the operation of the cache is tightly related to the data it stores, a short description of the Neo4j
durable representation format is necessary background. Neo4j stores data in multiple files and relies
on the underlying file system to handle this efficiently. Each Neo4j storage file contains uniform fixed
size records of a particular type:

Store file Record size Contents

nodestore 9 B Nodes

relstore 33 B Relationships

propstore 25 B Properties
for nodes and
relationships

stringstore 133 B Values of string
properties

arraystore 133 B Values of array
properties

Configuration & Performance

9

For strings and arrays, where data can be of variable length, data is stored in one or more 120B
chunks, with 13B record overhead. The sizes of these blocks can actually be configured when the
store is created using the string_block_size and array_block_size parameters. The size of each
record type can also be used to calculate the storage requirements of a Neo4j graph or the appropriate
cache size for each file buffer cache. Note that some strings can be stored without using the string
store, see Section 2.3, “Compressed storage of short strings”.

Neo4j uses multiple file buffer caches, one for each different storage file. Each file buffer cache
divides its storage file into a number of equally sized windows. Each cache window contains an even
number of storage records. The cache holds the most active cache windows in memory and tracks hit
vs. miss ratio for the windows. When the hit ratio of an uncached window gets higher than the miss
ratio of a cached window, the cached window gets evicted and the previously uncached window is
cached instead.

Configuration

Parameter Possible values Effect

use_memory_mapped_buffers true or false If set to true Neo4j will use
the operating systems memory
mapping functionality for the
file buffer cache windows. If set
to false Neo4j will use its own
buffer implementation. In this case
the buffers will reside in the JVM
heap which needs to be increased
accordingly. The default value for
this parameter is true, except on
Windows.

neostore. nodestore. db.

 mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the node storage file.

neostore. relationshipstore.

 db. mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the relationship store file.

neostore. propertystore. db.

 index. keys. mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the something-something file.

neostore. propertystore. db.

 index. mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the something-something file.

neostore. propertystore. db.

 mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the property storage file.

neostore. propertystore. db.

 strings. mapped_memory

The maximum amount of
memory to use for memory
mapped buffers for this file
buffer cache. The default
unit is MiB, for other units
use any of the following

suffixes: B, k, M or G.

The maximum amount of memory
to use for the file buffer cache of
the string property storage file.

Configuration & Performance

10

Parameter Possible values Effect

neostore. propertystore. db.

 arrays. mapped_memory

The maximum amount of memory
to use for the file buffer cache of
the array property storage file.

string_block_size Specifies the block size for storing
strings. This parameter is only
honored when the store is created,
otherwise it is ignored. Note that
each character in a string occupies
two bytes, meaning that a block
size of 120 (the default size) will
hold a 60 character long string
before overflowing into a second
block. Also note that each block
carries an overhead of 13 bytes.
This means that if the block size is
120, the size of the stored records
will be 133 bytes.

array_block_size

The number of
bytes per block.

Specifies the block size for storing
arrays. This parameter is only
honored when the store is created,
otherwise it is ignored. The default
block size is 120 bytes, and the
overhead of each block is the same
as for string blocks, i.e., 13 bytes.

dump_configuration true or false If set to true the current
configuration settings will be
written to the default system
output, mostly the console or the
logfiles.

When memory mapped buffers are used (use_memory_mapped_buffers = true) the heap size of
the JVM must be smaller than the total available memory of the computer, minus the total amount
of memory used for the buffers. When heap buffers are used (use_memory_mapped_buffers =
false) the heap size of the JVM must be large enough to contain all the buffers, plus the runtime heap
memory requirements of the application and the object cache.

When reading the configuration parameters on startup Neo4j will automatically configure the
parameters that are not specified. The cache sizes will be configured based on the available memory
on the computer, how much is used by the JVM heap, and how large the storage files are.

Configuration & Performance

11

2.1.2. Object cache

Quick info

• The object cache is sometimes called high level cache.

• It caches the Neo4j data in a form optimized for fast traversal.

The object cache caches individual nodes and relationships and their properties in a form that is
optimized for fast traversal of the graph. The content of this cache are objects with a representation
geared towards supporting the Neo4j object API and graph traversals. Reading from this cache is 5 to
10 times faster than reading from the file buffer cache. This cache is contained in the heap of the JVM
and the size is adapted to the current amount of available heap memory.

Nodes and relationships are added to the object cache as soon as they are accessed. The cached
objects are however populated lazily. The properties for a node or relationship are not loaded until
properties are accessed for that node or relationship. String (and array) properties are not loaded until
that particular property is accessed. The relationships for a particular node is also not loaded until the
relationships are accessed for that node. Eviction from the cache happens in an LRU manner when the
memory is needed.

Configuration

The main configuration parameter for the object cache is the cache_type parameter. This specifies
which cache implementation to use for the object cache. The available cache types are:

cache_type Description

none Do not use a high level cache. No objects will be cached.

soft Provides optimal utilization of the available memory. Suitable for high performance
traversal. May run into GC issues under high load if the frequently accessed parts of
the graph does not fit in the cache.

This is the default cache implementation.

weak Provides short life span for cached objects. Suitable for high throughput applications
where a larger portion of the graph than what can fit into memory is frequently
accessed.

strong This cache will cache all data in the entire graph. It will never release memory held
by the cache. Provides optimal performance if your graph is small enough to fit in
memory.

Heap memory usage

This table can be used to calculate how much memory the data in the object cache will occupy on a
64bit JVM:

Object Size Comment

Node 344 B Size for each node (not counting its relationships or properties).

Configuration & Performance

12

Object Size Comment

48 B Object overhead.

136 B Property storage (ArrayMap 48B, HashMap 88B).

136 B Relationship storage (ArrayMap 48B, HashMap 88B).

24 B Location of first / next set of relationships.

208 B Size for each relationship (not counting its properties).

48 B Object overhead.

Relationship

136 B Property storage (ArrayMap 48B, HashMap 88B).

116 B Size for each property of a node or relationship.

32 B Data element - allows for transactional modification and keeps track
of on disk location.

48 B Entry in the hash table where it is stored.

12 B Space used in hash table, accounts for normal fill ratio.

Property

24 B Property key index.

108 B Size for each relationship type for a node that has a relationship of
that type.

48 B Collection of the relationships of this type.

48 B Entry in the hash table where it is stored.

Relationships

12 B Space used in hash table, accounts for normal fill ratio.

Relationships 8 B Space used by each relationship related to a particular node (both
incoming and outgoing).

Primitive 24 B Size of a primitive property value.

String 64+B Size of a string property value. 64 + 2*len(string) B (64 bytes,
plus two bytes for each character in the string).

2.2. JVM Settings
Properly configuring memory utilization of the JVM is crucial for optimal performance. As an
example, a poorly configured JVM could spend all CPU time performing garbage collection (blocking
all threads from performing any work). Requirements such as latency, total throughput and available
hardware have to be considered to find the right setup. In production, Neo4j should run on a multi
core/CPU platform with the JVM in server mode.

2.2.1. Configuring heap size and GC

A large heap allows for larger node and relationship caches — which is a good thing — but large
heaps can also lead to latency problems caused by full garbage collection. The different high level
cache implementations available in Neo4j together with a suitable JVM configuration of heap size and
garbage collection (GC) should be able to handle most workloads.

The default cache (soft reference based LRU cache) works best with a heap that never gets full: a
graph where the most used nodes and relationships can be cached. If the heap gets too full there is a

Configuration & Performance

13

risk that a full GC will be triggered; the larger the heap, the longer it can take to determine what soft
references should be cleared.

Using the strong reference cache means that all the nodes and relationships being used must fit in the
available heap. Otherwise there is a risk of getting out-of-memory exceptions. The soft reference and
strong reference caches are well suited for applications were the overal throughput is important.

The weak reference cache basically needs enough heap to handle the peak load of the
application — peak load multiplied by the average memory required per request. It is well suited for
low latency requirements were GC interuptions are not acceptable.

When running Neo4j on Windows, keep in mind that the memory mapped buffers are allocated on
heap by default, so need to be taken into consideration when determining heap size.

Table 2.1. Guidelines for heap size

Number of
primitives

RAM size Heap
configuration

Reserved RAM
for the OS

10M 2GB 512MB the rest

100M 8GB+ 1-4GB 1-2GB

1B+ 16GB-32GB+ 4GB+ 1-2GB

The recommended garbage collector to use when running Neo4j in production is the Concurrent Mark
and Sweep Compactor turned on by supplying -XX:+UseConcMarkSweepGC as a JVM parameter.

2.3. Compressed storage of short strings
Neo4j will classify your strings and store them accordingly. If a string is classified as a short string it
will be stored without indirection in the property store. This means that there will be no string records
created for storing that string. Additionally, when no string record is needed to store the property,
it can be read and written in a single lookup. This leads to improvements in performance and lower
storage overhead.

For a string to be classified as a short string, one of the following must hold:

• It is encodable in UTF-8 or Latin-1, 7 bytes or less.

• It is alphanumerical, and 10 characters or less (9 if using accented european characters).

• It consists of only upper case, or only lower case characters, including the punctuation characters
space, underscore, period, dash, colon, or slash. Then it is allowed to be up to 12 characters.

• It consists of only numerical characters, inlcuding the punctuation characters plus, comma, single
quote, space, period, or dash. Then it is allowed to be up to 15 characters.

14

Chapter 3. Transaction management
In order to fully maintain data integrity and ensure good transactional behavior, Neo4j supports the
ACID properties:

• atomicity - if any part of a transaction fails, the database state is left unchanged

• consistency - any transaction will leave the database in a consistent state

• isolation - during a transaction, modified data cannot be accessed by other operations

• durability - the DBMS can always recover the results of a committed transaction

Specifically:

• All modifications to Neo4j data must be wrapped in transactions.

• The default isolation level is READ_COMMITTED.

• Data retrieved by traversals is not protected from modification by other transactions.

• Non-repeatable reads may occur (i.e., only write locks are acquired and held until the end of the
transaction).

• One can manually acquire write locks on nodes and relationships to achieve higher level of
isolation (SERIALIZABLE).

• Locks are acquired at the Node and Relationship level.

• Deadlock detection is built into the core transaction management.

3.1. Interaction cycle
All write operations that work with the graph must be performed in a transaction. Transactions are
thread confined and can be nested as “flat nested transactions”. Flat nested transactions means that
all nested transactions are added to the scope of the top level transaction. A nested transaction can
mark the top level transaction for rollback, meaning the entire transaction will be rolled back. To only
rollback changes made in a nested transaction is not possible.

When working with transactions the interaction cycle looks like this:

1. Begin a transaction.

2. Operate on the graph performing write operations.

3. Mark the transaction as successful or not.

4. Finish the transaction.

It is very important to finish each transaction. The transaction will not release the locks or memory
it has acquired until it has been finished. The idiomatic use of transactions in Neo4j is to use a try-
finally block, starting the transaction and then try to perform the write operations. The last operation

Transaction management

15

in the try block should mark the transaction as successful while the finally block should finish the
transaction. Finishing the transaction will perform commit or rollback depending on the success
status.

Caution

All modifications performed in a transaction are kept in memory. This means that very
large updates have to be split into several top level transactions to avoid running out of
memory. It must be a top level transaction since splitting up the work in many nested
transactions will just add all the work to the top level transaction.

In an environment that makes use of thread pooling other errors may occur when failing to finish a
transaction properly. Consider a leaked transaction that did not get finished properly. It will be tied
to a thread and when that thread gets scheduled to perform work starting a new (what looks to be a)
top level transaction it will actually be a nested transaction. If the leaked transaction state is “marked
for rollback” (which will happen if a deadlock was detected) no more work can be performed on that
transaction. Trying to do so will result in error on each call to a write operation.

3.2. Isolation levels
By default a read operation will read the last committed value unless a local modification within the
current transaction exist. The default isolation level is very similar to READ_COMMITTED: reads do not
block or take any locks so non-repeatable reads can occur. It is possible to achieve a stronger isolation
level (such as REPETABLE_READ and SERIALIZABLE) by manually acquiring read and write locks.

3.3. Default locking behavior
• When adding, changing or removing a property on a node or relationship a write lock will be taken

on the specific node or relationship.

• When creating or deleting a node a write lock will be taken for the specific node.

• When creating or deleting a relationship a write lock will be taken on the specific relationship and
both its nodes.

The locks will be added to the transaction and released when the transaction finishes.

3.4. Deadlocks
Since locks are used it is possible for deadlocks to happen. Neo4j will however detect any deadlock
(caused by acquiring a lock) before they happen and throw an exception. Before the exception is
thrown the transaction is marked for rollback. All locks acquired by the transaction are still being held
but will be released when the transaction is finished (in the finally block as pointed out earlier). Once
the locks are released other transactions that were waiting for locks held by the transaction causing the
deadlock can proceed. The work performed by the transaction causing the deadlock can then be retried
by the user if needed.

Experiencing frequent deadlocks is an indication of concurrent write requests happening in such a
way that it is not possible to execute them while at the same time live up to the intended isolation

Transaction management

16

and consistency. The solution is to make sure concurrent updates happen in a reasonable way. For
example given two specific nodes (A and B), adding or deleting relationships to both these nodes in
random order for each transaction will result in deadlocks when there are two or more transactions
doing that concurrently. One solution is to make sure that updates always happens in the same order
(first A then B). Another solution is to make sure that each thread/transaction does not have any
conflicting writes to a node or relationship as some other concurrent transaction. This can for example
be achieved by letting a single thread do all updates of a specific type.

Important

Deadlocks caused by the use of other synchronization than the locks managed by
Neo4j can still happen. Since all operations in the Neo4j API are thread safe unless
specified otherwise, there is no need for external synchronization. Other code that requires
synchronization should be synchronized in such a way that it never performs any Neo4j
operation in the synchronized block.

3.5. Delete semantics
When deleting a node or a relationship all properties for that entity will be automatically removed but
the relationships of a node will not be removed.

Caution

Neo4j enforces a constraint (upon commit) that all relationships must have a valid
start node and end node. In effect this means that trying to delete a node that still has
relationships attached to it will throw an exception upon commit. It is however possible
to choose in which order to delete the node and the attached relationships as long as no
relationships exist when the transaction is committed.

The delete semantics can be summarized in the following bullets:

• All properties of a node or relationship will be removed when it is deleted.

• A deleted node can not have any attached relationships when the transaction commits.

• It is possible to acquire a reference to a deleted relationship or node that has not yet been
committed.

• Any write operation on a node or relationship after it has been deleted (but not yet committed) will
throw an exception

• After commit trying to acquire a new or work with an old reference to a deleted node or relationship
will throw an exception.

17

Chapter 4. Neo4j Server

4.1. Server Installation
Neo4j can be installed as a server, running either as a headless application or system service.

1. Download the latest release from http://neo4j.org/download

• select the appropriate version for your platform

2. Extract the contents of the archive

• refer to the top-level extracted directory as NEO4J-HOME

3. Use the scripts in the bin directory

• for Linux/MacOS, run $NEO4J_HOME/bin/neo4j start

• for Windows, double-click on %NEO4J_HOME%\bin\Neo4j.bat

4. Refer to the packaged information in the doc directory for details

4.1.1. As a Windows service

With administrative rights, Neo4j can be installed as a Windows service.

1. Click Start –> All Programs –> Accessories

2. Right click Command Prompt –> Run as Administrator

3. Provide authorization and/or the Administrator password

4. Navigate to %NEO4J_HOME%

5. Run bin\Neo4j.bat install

To uninstall, run bin\Neo4j.bat remove as Administrator.

To query the status of the service, run bin\Neo4j.bat query

To start/stop the service from the command prompt, run bin\Neo4j.bat +action+

4.1.2. Linux Service

Neo4j can participate in the normal system startup and shutdown process. The following procedure
should work on most popular Linux distributions:

1. cd $NEO4J_HOME

2. sudo ./bin/neo4j install

http://neo4j.org/download

Neo4j Server

18

• if asked, enter your password to gain super-user privileges

3. service neo4j-server status

• should indicate that the server is not running

4. service neo4j-server start

• will start the server

4.1.3. Macintosh Service

Neo4j can be installed as a Mac launchd job:

1. cd $NEO4J_HOME

2. sudo ./bin/neo4j install

• if asked, enter your password to gain super-user privileges

3. launchctl load ~/Library/LaunchAgents/wrapper.neo4j-server.plist

• needed to tell launchd about the "job"

4. launchctl list | grep neo

• should reveal the launchd "wrapper.neo4j-server" job for running the Neo4j Server

5. launchctl start wrapper.neo4j-server

• to start the Neo4j Server under launchd control

6. ./bin/neo4j status

• should indicate that the server is running

4.1.4. Multiple Server instances on one machine

Neo4j can be set up to run as several instances on one machine, providing for instance several
databases for development. To configure, install two instances of the Neo4j Server in two different
directories. Before running the Windows install or startup, change in conf/neo4j-wrapper.conf

Name of the service for the first instance

wrapper.name=neo4j_1

and for the second instance

Name of the service for the second instance

wrapper.name=neo4j_2

in order not to get name clashes installing and starting the instances as services.

Also, the port numbers for the web administration and the servers should be changed to non-clashing
values in conf/neo4j-server.properties:

Neo4j Server

19

Server 1 (port 7474):

org.neo4j.server.webserver.port=7474

org.neo4j.server.webadmin.data.uri=http://localhost:7474/db/data/

org.neo4j.server.webadmin.management.uri=http://localhost:7474/db/manage/

Server 2 (port 7475):

org.neo4j.server.webserver.port=7475

org.neo4j.server.webadmin.data.uri=http://localhost:7475/db/data/

org.neo4j.server.webadmin.management.uri=http://localhost:7475/db/manage/

4.2. Server Configuration
Quick info

• The server’s primary configuration file is found under conf/neo4j-server.properties

• The conf/log4j.properties file contains the default server logging configuration

• Low-level performance tuning parameters are found in conf/neo4j.properties

• Configuraion of the deamonizing wrapper are found in conf/neo4j-wrapper.properties

4.2.1. Important server configurations parameters

The main configuration file for the server can be found:

conf/neo4j-server.properties

This file contains several important settings, and although the defaults are sensible administrators
might choose to make changes (especially to the port settings).

Set the location on disk of the database directory

org.neo4j.server.database.location=data/graph.db

Note that on Windows systems, absolute locations including drive letters need to read "c:/data/db"

Specify HTTP server port supporting data, administrative, and UI access:

org.neo4j.server.webserver.port=7474

Set the location of the round-robin database directory which gathers metrics on the running server
instance.

org.neo4j.server.webadmin.rrdb.location=data/graph.db/../rrd

Set the URI path for the REST data API through which the database is accessed. For non-local access,
consider to put in the external hostname of your server instead of localhost, e.g. http://my.host:7474/
db/data .

http://my.host:7474/db/data
http://my.host:7474/db/data

Neo4j Server

20

org.neo4j.server.webadmin.data.uri=http://localhost:7474/db/data/

The management URI for the administration API that the Webadmin tool uses. If you plan to connect
to the Webadmin from other than localhost, put in the external hostname of your server instead of
localhost, e.g. http://my.host:7474/db/manage .

org.neo4j.server.webadmin.management.uri=http://localhost:7474/db/manage

Low-level performance tuning parameters can be explicitly set by referring to the following property:

org.neo4j.server.db.tuning.properties=neo4j.properties

If this property isn’t set, the server will look for a file called neo4j.properties in the same directory
as the neo4j-server.properties file.

If this property isn’t set, and there is no neo4j.properties file in the default configuration directory,
then the server will log a warning. Subsequently at runtime the database engine will attempt tune itself
based on the prevailing conditions.

4.2.2. Neo4j Database performance configuration

The fine-tuning of the low-level Neo4j graph database engine is specified in a separate properties file.

conf/neo4j.properties

The graph database engine has a range of performance tuning options which are enumerated in
Section 4.6, “Tuning the server performance”. Note that other factors than Neo4j tuning should
be considered when performance tuning a server, including general server load, memory and file
contention, and even garbage collection penalties on the JVM, though such considerations are beyond
the scope of this configuration document.

4.2.3. Logging configuration

The logging framework in use by the Neo4j server is java.util.logging and is configured in

conf/logging.properties

By default it is setup to print INFO level messages both on screen and in a rolling file in data/log.
Most deployments will choose to use their own configuration here to meet local standards. During
development, much useful information can be found in the logs so some form of logging to disk is
well worth keeping. On the other hand, if you want to completely silence the console output, set

java.util.logging.ConsoleHandler.level=OFF

Apart from log statements originating from the Neo4j server, other libraries report their messages
through various frameworks.

Zookeeper is hardwired to use the log4j logging framework. The bundled

conf/log4j.properties

applies for this use only and uses a rolling appender and outputs logs by default to the data/log
directory.

http://my.host:7474/db/manage

Neo4j Server

21

YAJSW, the wrapper implementation used for managing the neo4j service, utilizes a variety of
libraries that log output and it also does its own logging. This set of messages is configured in

conf/wrapper-logging.properties

following the standard java.util.logging conventions. By default nothing is outputted but in case
debugging is needed here you can set things up to see where any trouble may be.

4.2.4. Other configuration options

Setting a custom Java command

To set a custom Java executable instead of the default java command, in conf/neo4j-wrapper.conf
set

wrapper.java.command=/path/to/jre/java

Note that on Windows systems, absolute locations including drive letters need to read "c:/jre6/bin/
java.exe"

4.3. Setup for remote debugging
In order to configure the Neo4j server for remote debugging sessions, the java debugging parameters
need to be passed to the java process through the configuration. They live in

conf/neo4j-wrapper.properties

In order to specify the parameters, add a line for the additional java arguments to read.

Java Additional Parameters

wrapper.java.additional.1=-Dorg.neo4j.server.properties=conf/neo4j-server.properties

wrapper.java.additional.2=-Dlog4j.configuration=file:conf/log4j.properties

wrapper.java.additional.3=-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005 -Xdebug-Xnoagent-Djava.compiler=NONE-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

which will start a Neo4j server ready for remote debugging attachement at localhost and port 5005.
Use these parameters to attach to the process after starting the server from Eclipse, IntelliJ or your
remote debugger of choice.

4.4. Starting the Neo4j server in high
availability mode

Note

The High Availability features are only available in the Neo4j Enterprise Edition.

To run the Neo4j server in high availability mode there are two things you need to do. You have to
configure the server to start up the database in high availability mode and you have to configure the
Neo4j database for operating in high availability mode.

Instructing the server to start the database in high availability mode is as easy as setting
the org.neo4j.server.database.mode property in the server properties file (conf/neo-

Neo4j Server

22

server.properties) to ha. The default value for this parameter is single, which will start the
database in standalone mode without participating in a cluster, still giving you Online Backup.

Configuring the Neo4j database for operating in high availability mode requires specifying a few
properties in conf/neo4j.properties. First you need to specify ha.machine_id, this is a positive
integer id that uniquely identifies this server in the cluster.

Example: ha.machine_id = 1

Then you have to specify ha.zoo_keeper_servers, this is a comma separated list of hosts and ports
for communicating with each member of the Neo4j Coordinator cluster.

For example: ha.zoo_keeper_servers = neo4j-manager-01:2180,neo4j-
manager-02:2180,neo4j-manager-03:2180.

You can also, optionally, configure the ha.cluster_name. This is the name of the cluster this
instance is supposed to join. Accepted characters are alphabetical, numerical, dot, dash, and
underscore. This configuration is useful if you have multiple Neo4j HA clusters managed by the same
Coordinator cluster.

Example: ha.cluster_name = my_neo4j_ha_cluster

4.4.1. Starting a Neo4j Coordinator

A Neo4j Coordinator cluster provides the Neo4j HA Data cluster with reliable coordination of
lifecycle activities, like electing the master. Neo4j Server includes everything needed for running a
Neo4j Coordinator.

Configuration of a Coordinator is specified in these files:

• conf/coord.cfg - coordinator operational settings

• data/coordinator/myid - unqiue identification of the coordinator

Once a Neo4j Coordinator instance has been configured, you can use the bin/neo4j-coordinator
command to start the Neo4j Coordinator server on all desired servers with the same configuration, just
changing the data/coordinator/myid to unique numbers. You can check that the coordinator is up
by running jconsole , attaching to the JVM and check for org.apache.zookeeper MBeans.

Figure 4.1. Neo4j Coordinator MBeans View

Neo4j Server

23

4.4.2. Starting the Neo4j Server

Once the desired neo4j Coordinators are up and running, you are ready to start your Neo4j HA
instance using bin/neo4j start. The details of the HA logs are available in the messages.log of
the graph database data directory, normally data/graph.db/mesages.log. You should see an entry
like

Tue Apr 12 09:25:58 CEST 2011: MasterServer communication server started and bound to 6361

Tue Apr 12 09:25:58 CEST 2011: Started as master

Tue Apr 12 09:25:58 CEST 2011: master-rebound set to 1

4.5. Server Plugins
Quick info

• The server’s functionality can be extended by adding plugins. Plugins are user-specified
code which extend the capabilities of the database, nodes, or relationships. The neo4j server
will then advertise the plugin functionality within representations as clients interact via
HTTP.

Plugins provide an easy way to extend the Neo4j REST API with new functionality, without the need
to invent your own API. Think of plugins as server-side scripts that can add functions for retrieving
and manipulating nodes, relationships, paths, properties or indices.

Tip

If you want to have full control over your API, and are willing to put in the effort, and
understand the risks, then Neo4j server also provides hooks for unmanaged extensions
based on JAX-RS.

The needed classes reside in the org.neo4j:server-api [http://search.maven.org/#search|gav|1|g%3A
%22org.neo4j%22%20AND%20a%3A%22server-api%22] jar file. See the linked page for downloads
and instructions on how to include it using dependency management. For Maven projects, add the
Server API dependencies in your pom.xml like this:

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>server-api</artifactId>

 <version>${neo4j-version}</version>

</dependency>

Where ${neo4j-version} is the intended version.

To create a plugin, your code must inherit from the ServerPlugin [http://components.neo4j.org/server-
api/1.4.M03/apidocs/org/neo4j/server/plugins/ServerPlugin.html] class. Your plugin should also:

• ensure that it can produce an (Iterable of) Node, Relationship or Path,

• specify parameters,

• specify a point of extension and of course

http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://search.maven.org/#search|gav|1|g%3A%22org.neo4j%22%20AND%20a%3A%22server-api%22
http://components.neo4j.org/server-api/1.4.M03/apidocs/org/neo4j/server/plugins/ServerPlugin.html
http://components.neo4j.org/server-api/1.4.M03/apidocs/org/neo4j/server/plugins/ServerPlugin.html
http://components.neo4j.org/server-api/1.4.M03/apidocs/org/neo4j/server/plugins/ServerPlugin.html

Neo4j Server

24

• contain the application logic.

An example of a plugin which augments the database (as opposed to nodes or relationships) follows:

Get all nodes or relationships plugin.

@Description("An extension to the Neo4j Server for getting all nodes or relationships")

public class GetAll extends ServerPlugin

{

 @Name("get_all_nodes")

 @Description("Get all nodes from the Neo4j graph database")

 @PluginTarget(GraphDatabaseService.class)

 public Iterable<Node> getAllNodes(@Source GraphDatabaseService graphDb)

 {

 return graphDb.getAllNodes();

 }

 @Description("Get all relationships from the Neo4j graph database")

 @PluginTarget(GraphDatabaseService.class)

 public Iterable<Relationship> getAllRelationships(@Source GraphDatabaseService graphDb)

 {

 return new NestingIterable<Relationship, Node>(graphDb.getAllNodes())

 {

 @Override

 protected Iterator<Relationship> createNestedIterator(Node item)

 {

 return item.getRelationships(Direction.OUTGOING).iterator();

 }

 };

 }

}

Find the shortest path between two nodes plugin.

public class ShortestPath extends ServerPlugin

{

 @Description("Find the shortest path between two nodes.")

 @PluginTarget(Node.class)

 public Iterable<Path> shortestPath(

 @Source Node source,

 @Description("The node to find the shortest path to.")

 @Parameter(name = "target") Node target,

 @Description("The relationship types to follow when searching for the shortest path(s). " +

 "Order is insignificant, if omitted all types are followed.")

 @Parameter(name = "types", optional = true) String[] types,

 @Description("The maximum path length to search for, default value (if omitted) is 4.")

 @Parameter(name = "depth", optional = true) Integer depth)

 {

 Expander expander;

 if (types == null)

 {

 expander = Traversal.expanderForAllTypes();

 }

 else

 {

 expander = Traversal.emptyExpander();

 for (int i = 0; i < types.length; i++)

 {

 expander = expander.add(DynamicRelationshipType.withName(types[i]));

 }

 }

 PathFinder<Path> shortestPath = GraphAlgoFactory.shortestPath(

 expander, depth == null ? 4 : depth.intValue());

 return shortestPath.findAllPaths(source, target);

Neo4j Server

25

 }

}

To deploy the code, simply compile it into a .jar file and place it onto the server classpath (which
by convention is the plugins directory under the Neo4j server home directory). The .jar file must
include the file META-INF/services/org.neo4j.server.plugins.ServerPlugin with the fully qualified
name of the implementation class. In this case, we’d have only a single entry in our config file, though
multiple entries are allowed, each on a separate line:

org.neo4j.server.examples.GetAll

Any other plugins in the same jar file must be listed here

The code above makes an extension visible in the database representation (via the @PluginTarget
annotation) whenever it is served from the Neo4j Server. Simply changing the @PluginTarget
parameter to Node.class or Relationship.class allows us to target those parts of the data model
should we wish. The functionality extensions provided by the plugin are automatically advertised
in representations on the wire. For example, clients can discover the extension implemented by the
above plugin easily by examining the representations they receive as responses from the server, e.g.
by performing a GET on the default database URI:

curl -v http://localhost:7474/db/data/

The response to the GET request will contain (by default) a JSON container that itself contains a
container called "extensions" where the available plugins are listed. In the following case, we only
have the GetAll plugin registered with the server, so only its extension functionality is available.
Extension names will be automatically assigned, based on method names, if not specifically specified
using the @Name annotation.

{

"extensions-info" : "http://localhost:7474/db/data/ext",

"node" : "http://localhost:7474/db/data/node",

"node_index" : "http://localhost:7474/db/data/index/node",

"relationship_index" : "http://localhost:7474/db/data/index/relationship",

"reference_node" : "http://localhost:7474/db/data/node/0",

"extensions_info" : "http://localhost:7474/db/data/ext",

"extensions" : {

 "GetAll" : {

 "get_all_nodes" : "http://localhost:7474/db/data/ext/GetAll/graphdb/get_all_nodes",

 "get_all_relationships" : "http://localhost:7474/db/data/ext/GetAll/graphdb/getAllRelationships"

 }

}

Performing a GET on one of the two extension URIs gives back the meta information about the
service:

curl http://localhost:7474/db/data/ext/GetAll/graphdb/get_all_nodes

{

 "extends" : "graphdb",

 "description" : "Get all nodes from the Neo4j graph database",

 "name" : "get_all_nodes",

 "parameters" : []

}

To use it, just POST to this URL, with parameters as specified in the description and encoded as
JSON data content. F.ex for calling the shortest path extension (URI gotten from a GET to http://
localhost:7474/db/data/node/123):

curl -X POST http://localhost:7474/db/data/ext/GetAll/node/123/shortestPath -H "Content-Type: application/json" -d '{"target":"http://localhost:7474/db/data/node/456&depth=5"}'

http://localhost:7474/db/data/node/123
http://localhost:7474/db/data/node/123

Neo4j Server

26

If everything is OK a response code 200 and a list of zero or more items will be returned. If nothing is
returned (null returned from extension) an empty result and response code 204 will be returned. If the
extension throws an exception response code 500 and a detailed error message is returned.

Extensions that do any kind of write operation will have to manage their own transactions, i.e.
transactions aren’t managed automatically.

Through this model, any plugin can naturally fit into the general hypermedia scheme that Neo4j
espouses - meaning that clients can still take advantage of abstractions like Nodes, Relationships
and Paths with a straightforward upgrade path as servers are enriched with plugins (old clients don’t
break).

4.6. Tuning the server performance
At the heart of the Neo4j server is a regular Neo4j storage engine instance. That engine can be tuned
in the same way as the other embedded configurations, using the same file format. The only difference
is that the server must be told where to find the fine-tuning configuration.

Quick info

• The neo4j.properties file is a standard configuration file that databases load in order to tune
their memory use and caching strategies.

• See Section 2.1, “Caches in Neo4j” for more information.

4.6.1. Specifying Neo4j tuning properties

The conf/neo4j-server.properties file in the server distribution, is the main configuration file
for the server. In this file we can specify a second properties file that contains the database tuning
settings (that is, the neo4j.properties file). This is done by setting a single property to point to a
valid neo4j.properties file:

org.neo4j.server.db.tuning.properties={neo4j.properties file}

On restarting the server the tuning enhancements specified in the neo4j.properties file will be
loaded and configured into the underlying database engine.

4.6.2. Specifying JVM tuning properties

Tuning the standalone server is achieved by editing the neo4j-wrapper.conf file in the conf
directory of NEO4J_HOME.

Edit the following properties:

Table 4.1. neo4j-wrapper.conf JVM tuning properties

Property Name Meaning

wrapper. java. initmemory initial heap size (in MB)

wrapper. java. maxmemory maximum heap size (in MB)

Neo4j Server

27

Property Name Meaning

wrapper. java. additional. N additional literal JVM parameter, where N is a
number for each

For more information on the tuning properties, see Section 2.2, “JVM Settings”.

4.7. Unmanaged Extensions
Quick info

• Danger Men at Work! The unmanaged extensions are a way of deploying arbitrary JAX-RS
code into the Neo4j server.

• The unmanaged extensions are exactly that: unmanaged. If you drop poorly tested code into
the server, it’s highly like you’ll degrade its performance, so be careful.

Some projects want extremely fine control over their server-side code. For this we’ve introduced an
unmanaged extension API.

Warning

It’s a sharp tool, allowing users to deploy arbitrary JAX-RS [http://en.wikipedia.org/wiki/
JAX-RS] classes to the server and so you should be careful when thinking about using
this. In particular you should understand that it’s easy to consume lots of heap space on the
server and hinder performance if you’re not careful.

Still, if you understand the disclaimer, then you load your JAX-RS classes into the Neo4j server
simply by adding adding a @Context annotation to your code, compiling against the JAX-RS jar and
any Neo4j jars you’re making use of. Then add your classes to the runtime classpath (just drop it in
the lib directory of the Neo4j server). In return you get access to the hosted environment of the Neo4j
server like logging through the org.neo4j.server.logging.Logger.

In your code, you get access to the underlying GraphDatabaseService through the @Context
annotation like so:

public MyCoolService(@Context GraphDatabaseService database)

{

 // Have fun here, but be safe!

}

Remember, the unmanaged API is a very sharp tool. It’s all to easy to compromise the server by
deploying code this way, so think first and see if you can’t use the managed extensions in preference.
However, a number of context parameters can be automatically provided for you, like the reference to
the database.

In order to specify the mount point of your extension, a full class looks like this:

Unmanaged extension example.

@Path("/helloworld")

public class HelloWorldResource

http://en.wikipedia.org/wiki/JAX-RS
http://en.wikipedia.org/wiki/JAX-RS
http://en.wikipedia.org/wiki/JAX-RS

Neo4j Server

28

{

 private final GraphDatabaseService database;

 public HelloWorldResource(@Context GraphDatabaseService database)

 {

 this.database = database;

 }

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 @Path("/{nodeId}")

 public Response hello(@PathParam("nodeId") long nodeId)

 {

 // Do stuff with the database

 return Response.status(Status.OK).entity(

 ("Hello World, nodeId=" + nodeId).getBytes()).build();

 }

}

Build this code, and place the resulting jar file (and any custom dependencies) into the
$NEO4J_SERVER_HOME/plugins directory, and include this class in the neo4j-server.properties
file, like so:

#Comma separated list of JAXRS packages containing JAXRS Resource, one package name for each mountpoint.

org.neo4j.server.thirdparty_jaxrs_classes=org.neo4j.examples.server.unmanaged=/examples/unmanaged

Which binds the hello method to respond to GET requests at the URI: http://{neo4j_server}:
{neo4j_port}/examples/unmanaged/helloworld/{nodeId}

curl http://localhost:7474/examples/unmanaged/helloworld/123

which results in

Hello World, nodeId=123

29

Chapter 5. Indexing
Indexing in Neo4j can be done in two different ways:

1. The database itself is a natural index consisting of its relationships of different types between
nodes. For example a tree structure can be layered on top of the data and used for index lookups
performed by a traverser.

2. Separate index engines can be used, with Apache Lucene [http://lucene.apache.org/java/3_1_0/
index.html] being the default backend included with Neo4j.

This chapter demonstrate how to use the second type of indexing, focussing on Lucene.

5.1. Introduction
Indexing operations are part of the Neo4j index API [http://components.neo4j.org/neo4j/1.4.M03/
apidocs/org/neo4j/graphdb/index/package-summary.html].

Each index is tied to a unique, user-specified name (for example "first_name" or "books") and
can index either nodes [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/
Node.html] or relationships [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/
Relationship.html].

The default index implementation is provided by the neo4j-lucene-index component, which
is included in the standard Neo4j download. It can also be downloaded separately from http://
repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/ . For Maven users, the neo4j-lucene-
index component has the coordinates org.neo4j:neo4j-lucene-index and should be used
with the same version of org.neo4j:neo4j-kernel. Different versions of the index and kernel
components are not compatible in the general case. Both components are included transitively by the
org.neo4j:neo4j:pom artifact which makes it simple to keep the versions in sync.

Note

All modifying index operations must be performed inside a transaction, as with any
mutating operation in Neo4j.

5.2. Create
An index is created if it doesn’t exist when you ask for it. Unless you give it a custom configuration, it
will be created with default configuration and backend.

To set the stage for our examples, let’s create some indexes to begin with:

IndexManager index = graphDb.index();

Index<Node> actors = index.forNodes("actors");

Index<Node> movies = index.forNodes("movies");

RelationshipIndex roles = index.forRelationships("roles");

This will create two node indexes and one relationship index with default configuration. See
Section 5.8, “Relationship indexes” for more information specific to relationship indexes.

http://lucene.apache.org/java/3_1_0/index.html
http://lucene.apache.org/java/3_1_0/index.html
http://lucene.apache.org/java/3_1_0/index.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/package-summary.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/package-summary.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/package-summary.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/Node.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/Relationship.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/Relationship.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/Relationship.html
http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/
http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-index/

Indexing

30

See Section 5.10, “Configuration and fulltext indexes” for how to create fulltext indexes.

You can also check if an index exists like this:

IndexManager index = graphDb.index();

boolean indexExists = index.existsForNodes("actors");

5.3. Delete
Indexes can be deleted. When deleting, the entire contents of the index will be removed as well as its
associated configuration. A new index can be created with the same name at a later point in time.

IndexManager index = graphDb.index();

Index<Node> actors = index.forNodes("actors");

actors.delete();

Note that the actual deletion of the index is made during the commit of the surrounding transaction.
Calls made to such an index instance after delete() [http://components.neo4j.org/neo4j/1.4.M03/
apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29] has been called are invalid inside that
transaction as well as outside (if the transaction is successful), but will become valid again if the
transaction is rolled back.

5.4. Add
Each index supports associating any number of key-value pairs with any number of entities (nodes or
relationships), where each association between entity and key-value pair is performed individually. To
begin with, let’s add a few nodes to the indexes:

// Actors

Node reeves = graphDb.createNode();

actors.add(reeves, "name", "Keanu Reeves");

Node bellucci = graphDb.createNode();

actors.add(bellucci, "name", "Monica Bellucci");

// multiple values for a field

actors.add(bellucci, "name", "La Bellucci");

// Movies

Node theMatrix = graphDb.createNode();

movies.add(theMatrix, "title", "The Matrix");

movies.add(theMatrix, "year", 1999);

Node theMatrixReloaded = graphDb.createNode();

movies.add(theMatrixReloaded, "title", "The Matrix Reloaded");

movies.add(theMatrixReloaded, "year", 2003);

Node malena = graphDb.createNode();

movies.add(malena, "title", "Malèna");

movies.add(malena, "year", 2000);

Note that there can be multiple values associated with the same entity and key.

Next up, we’ll create relationships and index them as well:

// we need a relationship type

DynamicRelationshipType ACTS_IN = DynamicRelationshipType.withName("ACTS_IN");

// create relationships

Relationship role1 = reeves.createRelationshipTo(theMatrix, ACTS_IN);

roles.add(role1, "name", "Neo");

Relationship role2 = reeves.createRelationshipTo(theMatrixReloaded, ACTS_IN);

roles.add(role2, "name", "Neo");

Relationship role3 = bellucci.createRelationshipTo(theMatrixReloaded, ACTS_IN);

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#delete%28%29

Indexing

31

roles.add(role3, "name", "Persephone");

Relationship role4 = bellucci.createRelationshipTo(malena, ACTS_IN);

roles.add(role4, "name", "Malèna Scordia");

Assuming we set the same key-value pairs as properties as well, our example graph looks like this:

5.5. Remove
Removing [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/
Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29] from an index is similar to
adding, but can be done by supplying one of the following combinations of arguments:

• entity

• entity, key

• entity, key, value

// completely remove bellucci from the actors index

actors.remove(bellucci);

// remove any "name" entry of bellucci from the actors index

actors.remove(bellucci, "name");

// remove the "name" -> "La Bellucci" entry of bellucci

actors.remove(bellucci, "name", "La Bellucci");

5.6. Update
Important

To update an index entry, old one must be removed and a new one added.

Remember that a node or relationship can be associated with any number of key-value pairs in an
index, which means that you can index a node or relationship with many key-value pairs that have
the same key. In the case where a property value changes and you’d like to update the index, it’s not
enough to just index the new value - you’ll have to remove the old value as well.

Here’s a code example for that demonstrates how it’s done:

// create a node with a property

Node fishburn = graphDb.createNode();

fishburn.setProperty("name", "Fishburn");

// index it

actors.add(fishburn, "name", fishburn.getProperty("name"));

// update the index entry

actors.remove(fishburn, "name", fishburn.getProperty("name"));

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#remove%28T,%20java.lang.String,%20java.lang.Object%29

Indexing

32

fishburn.setProperty("name", "Laurence Fishburn");

actors.add(fishburn, "name", fishburn.getProperty("name"));

5.7. Search
An index can be searched in two ways, get [http://components.neo4j.org/neo4j/1.4.M03/apidocs/
org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29] and query
[http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#query
%28java.lang.String,%20java.lang.Object%29]. The get method will return exact matches to
the given key-value pair, whereas query exposes querying capabilities directly from the backend
used by the index. For example the Lucene query syntax [http://lucene.apache.org/java/3_1_0/
queryparsersyntax.html] can be used directly with the default indexing backend.

5.7.1. Get

This is how to search for a single exact match:

IndexHits<Node> hits = actors.get("name", "Keanu Reeves");

Node reeves = hits.getSingle();

IndexHits [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/
IndexHits.html] is an Iterable with some additional useful methods. For example getSingle() [http://
components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle
%28%29] returns the first and only item from the result iterator, or null if there isn’t any hit.

Here’s how to get a single relationship by exact matching and retrieve its start and end nodes:

Relationship persephone = roles.get("name", "Persephone").getSingle();

Node actor = persephone.getStartNode();

Node movie = persephone.getEndNode();

Finally, we can iterate over all exact matches from a relationship index:

for (Relationship role : roles.get("name", "Neo"))

{

 // this will give us Reeves twice

 Node reeves = role.getStartNode();

}

Important

In you don’t iterate through all the hits, IndexHits.close() [http://components.neo4j.org/
neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29] must be
called explicitly.

5.7.2. Query

There are two query methods, one which uses a key-value signature where the value represents a
query for values with the given key only. The other method is more generic and supports querying for
more than one key-value pair in the same query.

Here’s an example using the key-query option:

for (Node actor : actors.query("name", "*e*"))

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#get%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html#query%28java.lang.String,%20java.lang.Object%29
http://lucene.apache.org/java/3_1_0/queryparsersyntax.html
http://lucene.apache.org/java/3_1_0/queryparsersyntax.html
http://lucene.apache.org/java/3_1_0/queryparsersyntax.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#getSingle%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#close%28%29

Indexing

33

{

 // This will return Reeves and Bellucci

}

In the following example the query uses multiple keys:

for (Node movie : movies.query("title:*Matrix* AND year:1999"))

{

 // This will return "The Matrix" from 1999 only.

}

Note

Beginning a wildcard search with "*" or "?" is discouraged by Lucene, but will
nevertheless work.

Caution

You can’t have any whitespace in the search term with this syntax. See Section 5.11.3,
“Querying with Lucene Query objects” for how to do that.

5.8. Relationship indexes
An index for relationships is just like an index for nodes, extended by providing support to constrain
a search to relationships with a specific start and/or end nodes These extra methods reside in the
RelationshipIndex [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/
RelationshipIndex.html] interface which extends Index<Relationship> [http://components.neo4j.org/
neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html].

Example of querying a relationship index:

// find relationships filtering on start node

// using exact matches

IndexHits<Relationship> reevesAsNeoHits;

reevesAsNeoHits = roles.get("name", "Neo", reeves, null);

Relationship reevesAsNeo = reevesAsNeoHits.iterator().next();

reevesAsNeoHits.close();

// find relationships filtering on end node

// using a query

IndexHits<Relationship> matrixNeoHits;

matrixNeoHits = roles.query("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator().next();

matrixNeoHits.close();

And here’s an example for the special case of searching for a specific relationship type:

// find relationships filtering on end node

// using a relationship type.

// this is how to add it to the index:

roles.add(reevesAsNeo, "type", reevesAsNeo.getType().name());

// Note that to use a compound query, we can't combine committed

// and uncommitted index entries, so we'll commit before querying:

tx.success();

tx.finish();

// and now we can search for it:

IndexHits<Relationship> typeHits;

typeHits = roles.query("type:ACTS_IN AND name:Neo", null, theMatrix);

Relationship typeNeo = typeHits.iterator().next();

typeHits.close();

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/RelationshipIndex.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/Index.html

Indexing

34

Such an index can be useful if your domain has nodes with a very large number of relationships
between them, since it reduces the search time for a relationship between two nodes. A good example
where this approach pays dividends is in time series data, where we have readings represented as a
relationship per occurrence.

5.9. Scores
The IndexHits interface exposes scoring [http://components.neo4j.org/neo4j/1.4.M03/apidocs/
org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29] so that the index can communicate
scores for the hits. Note that the result is not sorted by the score unless you explicitly specify that. See
Section 5.11.2, “Sorting” for how to sort by score.

IndexHits<Node> hits = movies.query("title", "The*");

for (Node movie : hits)

{

 System.out.println(movie.getProperty("title") + " " + hits.currentScore());

}

5.10. Configuration and fulltext indexes
At the time of creation extra configuration can be specified to control the behavior of the index and
which backend to use. For example to create a Lucene fulltext index:

IndexManager index = graphDb.index();

Index<Node> fulltextMovies = index.forNodes("movies-fulltext",

 MapUtil.stringMap(IndexManager.PROVIDER, "lucene", "type", "fulltext"));

fulltextMovies.add(theMatrix, "title", "The Matrix");

fulltextMovies.add(theMatrixReloaded, "title", "The Matrix Reloaded");

// search in the fulltext index

Node found = fulltextMovies.query("title", "reloAdEd").getSingle();

Tip

In order to search for tokenized words, the query method has to be used. The get method
will only match the full string value, not the tokens.

The configuration of the index is persisted once the index has been created. The provider
configuration key is interpreted by Neo4j, but any other configuration is passed onto the backend
index (e.g. Lucene) to interpret.

Table 5.1. Lucene indexing configuration parameters

Parameter Possible values Effect

type exact, fulltext exact is the default and uses a Lucene
keyword analyzer [http://lucene.apache.org/
java/3_1_0/api/core/org/apache/lucene/analysis/
KeywordAnalyzer.html]. fulltext uses a white-
space tokenizer in its analyzer.

to_lower_case true, false This parameter goes together with type:
fulltext and converts values to lower case
during both additions and querying, making the
index case insensitive. Defaults to true.

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/IndexHits.html#currentScore%28%29
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/KeywordAnalyzer.html

Indexing

35

Parameter Possible values Effect

analyzer the full class name of
an Analyzer [http://
lucene.apache.org/
java/3_1_0/api/core/org/
apache/lucene/analysis/
Analyzer.html]

Overrides the type so that a custom analyzer
can be used. Note: to_lower_case still affects
lowercasing of string queries. If the custom
analyzer uppercases the indexed tokens, string
queries will not match as expected.

5.11. Extra features for Lucene indexes

5.11.1. Numeric ranges

Lucene supports smart indexing of numbers, querying for ranges and sorting such results, and so does
its backend for Neo4j. To mark a value so that it is indexed as a numeric value, we can make use of
the ValueContext [http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/
lucene/ValueContext.html] class, like this:

movies.add(theMatrix, "year-numeric", new ValueContext(1999).indexNumeric());

movies.add(theMatrixReloaded, "year-numeric", new ValueContext(2003).indexNumeric());

movies.add(malena, "year-numeric", new ValueContext(2000).indexNumeric());

int from = 1997;

int to = 1999;

hits = movies.query(QueryContext.numericRange("year-numeric", from, to));

Note

The same type must be used for indexing and querying. That is, you can’t index a value as
a Long and then query the index using an Integer.

By giving null as from/to argument, an open ended query is created. In the following example we are
doing that, and have added sorting to the query as well:

hits = movies.query(

 QueryContext.numericRange("year-numeric", from, null)

 .sortNumeric("year-numeric", false));

From/to in the ranges defaults to be inclusive, but you can change this behavior by using two extra
parameters:

movies.add(theMatrix, "score", new ValueContext(8.7).indexNumeric());

movies.add(theMatrixReloaded, "score", new ValueContext(7.1).indexNumeric());

movies.add(malena, "score", new ValueContext(7.4).indexNumeric());

// include 8.0, exclude 9.0

hits = movies.query(QueryContext.numericRange("score", 8.0, 9.0, true, false));

5.11.2. Sorting

Lucene performs sorting very well, and that is also exposed in the index backend, through the
QueryContext [http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/
lucene/QueryContext.html] class:

hits = movies.query("title", new QueryContext("*").sort("title"));

http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/analysis/Analyzer.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/ValueContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/ValueContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/ValueContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html

Indexing

36

for (Node hit : hits)

{

 // all movies with a title in the index, ordered by title

}

// or

hits = movies.query(new QueryContext("title:*").sort("year", "title"));

for (Node hit : hits)

{

 // all movies with a title in the index, ordered by year, then title

}

We sort the results by relevance (score) like this:

hits = movies.query("title", new QueryContext("The*").sortByScore());

for (Node movie : hits)

{

 // hits sorted by relevance (score)

}

5.11.3. Querying with Lucene Query objects

Instead of passing in Lucene query syntax queries, you can instantiate such queries programmatically
and pass in as argument, for example:

// a TermQuery will give exact matches

Node actor = actors.query(new TermQuery(new Term("name", "Keanu Reeves"))).getSingle();

Note that the TermQuery [http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/search/
TermQuery.html] is basically the same thing as using the get method on the index.

This is how to perform wildcard searches using Lucene Query Objects:

hits = movies.query(new WildcardQuery(new Term("title", "The Matrix*")));

for (Node movie : hits)

{

 System.out.println(movie.getProperty("title"));

}

Note that this allows for whitespace in the search string.

5.11.4. Compound queries

Lucene supports querying for multiple terms in the same query, like so:

hits = movies.query("title:*Matrix* AND year:1999");

Caution

Compound queries can’t search across committed index entries and those who haven’t got
committed yet at the same time.

5.11.5. Default operator

The default operator (that is whether AND or OR is used in between different terms) in a query is OR.
Changing that behavior is also done via the QueryContext [http://components.neo4j.org/neo4j-lucene-
index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html] class:

QueryContext query = new QueryContext("title:*Matrix* year:1999").defaultOperator(Operator.AND);

http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/search/TermQuery.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/search/TermQuery.html
http://lucene.apache.org/java/3_1_0/api/core/org/apache/lucene/search/TermQuery.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html
http://components.neo4j.org/neo4j-lucene-index/1.4.M03/apidocs/org/neo4j/index/lucene/QueryContext.html

Indexing

37

hits = movies.query(query);

5.11.6. Caching

If your index lookups becomes a performance bottle neck, caching can be enabled for certain keys in
certain indexes (key locations) to speed up get requests. The caching is implemented with an LRU
[http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used] cache so that only the most
recently accessed results are cached (with "results" meaning a query result of a get request, not a
single entity). You can control the size of the cache (the maximum number of results) per index key.

Index<Node> index = graphDb.index().forNodes("actors");

((LuceneIndex<Node>) index).setCacheCapacity("name", 300000);

Caution

This setting is not persisted after shutting down the database. This means: set this value
after each startup of the database if you want to keep it.

5.12. Batch insertion
Neo4j has a batch insertion mode intended for initial imports, which must run in a single
thread and bypasses transactions and other checks in favor of performance. Indexing
during batch insertion is done using BatchInserterIndex [http://components.neo4j.org/
neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html] which are provided via
BatchInserterIndexProvider [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/
index/BatchInserterIndexProvider.html]. An example:

BatchInserter inserter = new BatchInserterImpl("target/neo4jdb-batchinsert");

BatchInserterIndexProvider indexProvider = new LuceneBatchInserterIndexProvider(inserter);

BatchInserterIndex actors = indexProvider.nodeIndex("actors", MapUtil.stringMap("type", "exact"));

actors.setCacheCapacity("name", 100000);

Map<String, Object> properties = MapUtil.map("name", "Keanu Reeves");

long node = inserter.createNode(properties);

actors.add(node, properties);

// Make sure to shut down the index provider

indexProvider.shutdown();

inserter.shutdown();

The configuration parameters are the same as mentioned in Section 5.10, “Configuration and fulltext
indexes”.

5.12.1. Best practices

Here are some pointers to get the most performance out of BatchInserterIndex:

• Try to avoid flushing [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/
index/BatchInserterIndex.html#flush%28%29] too often because each flush will result in all
additions (since last flush) to be visible to the querying methods, and publishing those changes can
be a performance penalty.

• Have (as big as possible) phases where one phase is either only writes or only reads, and don’t
forget to flush after a write phase so that those changes becomes visible to the querying methods.

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndexProvider.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndexProvider.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndexProvider.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html#flush%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html#flush%28%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html#flush%28%29

Indexing

38

• Enable caching [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/
BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29] for keys you know
you’re going to do lookups for later on to increase performance significantly (though insertion
performance may degrade slightly).

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphdb/index/BatchInserterIndex.html#setCacheCapacity%28java.lang.String,%20int%29

39

Chapter 6. Graph Algorithms
Neo4j graph algorithms is a component that contains Neo4j implementations of some common
algorithms for graphs. It includes algorithms like:

• Shortest paths,

• all paths,

• all simple paths,

• Dijkstra and

• A*.

6.1. Introduction
The graph algorithms are found in the neo4j-graph-algo component, which is included in the
standard Neo4j download.

• Javadocs [http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/package-
summary.html]

• Download [http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND
%20a%3A%22neo4j-graph-algo%22]

• Source code [https://github.com/neo4j/community/tree/master/graph-algo]

For information on how to use neo4j-graph-algo as a dependency with Maven and other dependency
management tools, see org.neo4j:neo4j-graph-algo [http://search.maven.org/#search
%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22] Note that it
should be used with the same version of org.neo4j:neo4j-kernel [http://search.maven.org/
#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22]. Different
versions of the graph-algo and kernel components are not compatible in the general case. Both
components are included transitively by the org.neo4j:neo4j [http://search.maven.org/
#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22] artifact which makes
it simple to keep the versions in sync.

The starting point to find and use graph algorithms is GraphAlgoFactory [http://
components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/

GraphAlgoFactory.html].

6.2. Path finding examples
Calculating the shortest path (least number of relationships) between two nodes:

Node startNode = graphDb.createNode();

Node middleNode1 = graphDb.createNode();

Node middleNode2 = graphDb.createNode();

Node middleNode3 = graphDb.createNode();

Node endNode = graphDb.createNode();

http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/package-summary.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/package-summary.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/package-summary.html
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
https://github.com/neo4j/community/tree/master/graph-algo
https://github.com/neo4j/community/tree/master/graph-algo
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-graph-algo%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j-kernel%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.neo4j%22%20AND%20a%3A%22neo4j%22
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html
http://components.neo4j.org/neo4j/1.4.M03/apidocs/org/neo4j/graphalgo/GraphAlgoFactory.html

Graph Algorithms

40

createRelationshipsBetween(startNode, middleNode1, endNode);

createRelationshipsBetween(startNode, middleNode2, middleNode3, endNode);

// Will find the shortest path between startNode and endNode via

// "MY_TYPE" relationships (in OUTGOING direction), like f.ex:

//

// (startNode)-->(middleNode1)-->(endNode)

//

PathFinder<Path> finder = GraphAlgoFactory.shortestPath(

 Traversal.expanderForTypes(ExampleTypes.MY_TYPE, Direction.OUTGOING), 15);

Iterable<Path> paths = finder.findAllPaths(startNode, endNode);

Using Dijkstra’s algorithm [http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm] to calculate
cheapest path between node A and B where each relationship can have a weight (i.e. cost) and the
path(s) with least cost are found.

PathFinder<WeightedPath> finder = GraphAlgoFactory.dijkstra(

 Traversal.expanderForTypes(ExampleTypes.MY_TYPE, Direction.BOTH), "cost");

WeightedPath path = finder.findSinglePath(nodeA, nodeB);

// Get the weight for the found path

path.weight();

Using A* [http://en.wikipedia.org/wiki/A*_search_algorithm] to calculate the cheapest path between
node A and B, where cheapest is for example the path in a network of roads which has the shortest
length between node A and B. Here’s our example graph:

Node nodeA = createNode("name", "A", "x", 0d, "y", 0d);

Node nodeB = createNode("name", "B", "x", 7d, "y", 0d);

Node nodeC = createNode("name", "C", "x", 2d, "y", 1d);

Relationship relAB = createRelationship(nodeA, nodeC, "length", 2d);

Relationship relBC = createRelationship(nodeC, nodeB, "length", 3d);

Relationship relAC = createRelationship(nodeA, nodeB, "length", 10d);

EstimateEvaluator<Double> estimateEvaluator = new EstimateEvaluator<Double>()

{

 public Double getCost(final Node node, final Node goal)

 {

 double dx = (Double) node.getProperty("x") - (Double) goal.getProperty("x");

 double dy = (Double) node.getProperty("y") - (Double) goal.getProperty("y");

 double result = Math.sqrt(Math.pow(dx, 2) + Math.pow(dy, 2));

 return result;

 }

};

PathFinder<WeightedPath> astar = GraphAlgoFactory.aStar(

 Traversal.expanderForAllTypes(),

 CommonEvaluators.doubleCostEvaluator("length"), estimateEvaluator);

WeightedPath path = astar.findSinglePath(nodeA, nodeB);

The full source code of the path finding examples are found at https://github.com/neo4j/graphdb/blob/
master/graph-algo/src/test/java/examples/PathFindingExamplesTest.java.

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
https://github.com/neo4j/graphdb/blob/master/graph-algo/src/test/java/examples/PathFindingExamplesTest.java
https://github.com/neo4j/graphdb/blob/master/graph-algo/src/test/java/examples/PathFindingExamplesTest.java

41

Chapter 7. High Availability
Note

The High Availability features are only available in the Neo4j Enterprise Edition.

Neo4j High Availability or “Neo4j HA” provides the following two main features:

1. It enables a fault-tolerant database architecture, where several Neo4j slave databases can be
configured to be exact replicas of a single Neo4j master database. This allows the end-user system
to be fully functional and both read and write to the database in the event of hardware failure.

2. It enables a horizontally scaling read-mostly architecture that enables the system to handle more
read load than a single Neo4j database instance can handle.

7.1. Architecture
Neo4j HA has been designed to make the transition from single machine to multi machine operation
simple, by not having to change the already existing application.

Consider an existing application with Neo4j embedded and running on a single machine. To deploy
such an application in a multi machine setup the only required change is to switch the creation of the
GraphDatabaseService from EmbeddedGraphDatabase to HighlyAvailableGraphDatabase. Since
both implement the same interface, no additional changes are required.

High Availability

42

Figure 7.1. Typical setup when running multiple Neo4j instances in HA mode

When running Neo4j in HA mode there is always a single master and zero or more slaves. Compared
to other master-slave replication setups Neo4j HA can handle writes on a slave so there is no need to
redirect writes to the master.

A slave will handle writes by synchronizing with the master to preserve consistency. Updates will
however propagate from the master to other slaves eventually so a write from one slave is not
immediately visible on all other slaves. This is the only difference between multiple machines running
in HA mode compared to single machine operation. All other ACID characteristics are the same.

7.2. Setup and configuration
Neo4j HA can be set up to accommodate differing requirements for load, fault tolerance and available
hardware.

Within a cluster, Neo4j HA uses Apache ZooKeeper 1 for master election and propagation of
general cluster and machine status information. ZooKeeper can be seen as a distributed coordination
service. Neo4j HA requires a ZooKeeper service for initial master election, new master election
(current master failing) and to publish general status information about the current Neo4j HA

1http://hadoop.apache.org/zookeeper/

http://hadoop.apache.org/zookeeper/

High Availability

43

cluster (for example when a machine joined or left the cluster). Read operations through the
GraphDatabaseService API will always work and even writes can survive ZooKeeper failures if a
master is present.

ZooKeeper requires a majority of the ZooKeeper instances to be available to operate properly. This
means that the number of ZooKeeper instances should always be an odd number since that will make
best use of available hardware.

To further clarify the fault tolerance characteristics of Neo4j HA here are a few example setups:

7.2.1. Small

• 3 physical (or virtual) machines

• 1 ZooKeeper instance running on each machine

• 1 Neo4j HA instance running on each machine

This setup is conservative in the use of hardware while being able to handle moderate read load. It can
fully operate when at least 2 of the ZooKeeper instances are running. Since the ZooKeeper service and
Neo4j HA are running together on each machine this will in most scenarios mean that only one server
is allowed to go down.

7.2.2. Medium

• 5-7+ machines

• ZooKeeper running on 3, 5 or 7 machines

• Neo4j HA can run on 5+ machines

This setup may mean that two different machine setups have to be managed (some machines run both
ZooKeeper and Neo4j HA). The fault tolerance will depend on how many machines there are that are
running ZooKeeper. With 3 ZooKeeper instances the cluster can survive one ZooKeeper going down,
with 5 it can survive 2 and with 7 it can handle 3 ZooKeeper instances failing. The number of Neo4j
HA instances that can fail for normal operations is theoretically all but 1 (but for each required master
election the ZooKeeper service must be available).

7.2.3. Large

• 8+ total machines

• 3+ Neo4j HA machines

• 5+ Zookeeper, on separate dedicated machines

In this setup all ZooKeeper instances are running on separate machines as a dedicated ZooKeeper
service. The dedicated ZooKeeper cluster can handle half of the instances, minus 1, going down. The
Neo4j HA cluster will be able to operate with at least a single live machine. Adding more Neo4j HA
instances is very easy in this setup since Zookeeper is operating as a separate service.

High Availability

44

7.2.4. Installation Notes

For installation instructions of a High Availability cluster please visit the Neo4j Wiki 2.

Note that while the HighlyAvailableGraphDatabase supports the same API as the
EmbeddedGraphDatabase, it does have additional configuration parameters.

Table 7.1. HighlyAvailableGraphDatabase configuration parameters

Parameter Name Value Example value Required?

ha. machine_id integer >= 0 1 yes

ha. server (auto-discovered) host
& port to bind when
acting as master

my-domain. com:6001 no

ha. zoo_keeper_servers comma delimited
zookeeper connections

localhost:2181,

 localhost:2182,

 localhost:2183

yes

ha. pull_interval interval for polling
master from a slave, in
seconds

30 no

7.3. How Neo4j HA operates
A Neo4j HA cluster operates cooperatively, coordinating activity through Zookeeper.

On startup a Neo4j HA instance will connect to the ZooKeeper service to register itself and ask, "who
is master?" If some other machine is master, the new instance will start as slave and connect to that
master. If the machine starting up was the first to register — or should become master according to the
master election algorithm — it will start as master.

When performing a write transaction on a slave each write operation will be synchronized with the
master (locks will be acquired on both master and slave). When the transaction commits it will first
occur on the master. If the master commit is successful the transaction will be committed on the slave
as well. To ensure consistency, a slave has to be up to date with the master before performing a write
operation. This is built into the communication protocol between the slave and master, so that updates
will happen automatically if needed.

When performing a write on the master it will execute in the same way as running in normal
embedded mode. Currently the master will not push updates to the slave. Instead, slaves can be
configured to have a pull interval. Without polling, updates will only happen on slaves whenever they
synchronize a write with the master.

Having all writes go through slaves has the benefit that the data will be replicated on two machines.
This is recommended to avoid rollbacks in case of a master failure that could potentially happen when
the new master is elected.

2http://wiki.neo4j.org/content/High_Availability_Cluster

http://wiki.neo4j.org/content/High_Availability_Cluster

High Availability

45

Whenever a machine becomes unavailable the ZooKeeper service will detect that and remove it
from the cluster. If the master goes down a new master will automatically be elected. Normally a
new master is elected and started within just a few seconds and during this time no writes can take
place (the write will throw an exception). A machine that becomes available after being unavailable
will automatically reconnect to the cluster. The only time this is not true is when an old master had
changes that did not get replicated to any other machine. If the new master is elected and performs
changes before the old master recovers, there will two different versions of the data. The old master
will not be able to attach itself to the cluster and will require maintenance (replace the wrong version
of the data with the one running in the cluster).

All this can be summarized as:

• Slaves can handle write transactions.

• Updates to slaves are eventual consistent.

• Neo4j HA is fault tolerant and (depending on ZooKeeper setup) can continue to operate from X
machines down to a single machine.

• Slaves will be automatically synchronized with the master on a write operation.

• If the master fails a new master will be elected automatically.

• Machines will be reconnected automatically to the cluster whenever the issue that caused the outage
(network, maintenance) is resolved.

• Transactions are atomic, consistent and durable but eventually propagated out to other slaves.

• If the master goes down any running write transaction will be rolled back and during master
election no write can take place.

• Reads are highly available.

46

Chapter 8. Operations
This chapter describes how to maintain a Neo4j installation. This includes topics such as backing up
the database and monitoring the health of the database as well as diagnosing issues.

8.1. Backup
Note

The Backup features are only available in the Neo4j Enterprise Edition.

Backups are performed over the network live from a running graph database onto a local copy. There
are two types of backup: full and incremental.

A full backup copies the database files without acquiring any locks, allowing for continued operations
on the target instance. This of course means that while copying, transactions will continue and the
store will change. For this reason, the transaction that was running when the backup operation started
is noted and, when the copy operation completes, all transactions from the latter down to the one
happening at the end of the copy are replayed on the backup files. This ensures that the backed up data
represent a consistent and up-to-date snapshot of the database storage.

In contrast, incremental backup does not copy store files - instead it copies the logs of the transactions
that have taken place since the last full or incremental backup which are then replayed over an
existing backup store. This makes incremental backups far more efficient that doing full backups
every time but they also require that a full backup has taken place before they are executed.

Regardless of the mode a backup is created, the resulting files represent a consistent database snapshot
and they can be used to boot up a Neo4j instance.

The database to be backed up is specified using a URI with syntax

<running mode>://<host>[:port]{,<host>[:port]*}

Running mode must be defined and is either single for non-HA or ha for HA clusters. The
<host>[:port] part points to a host running the database, on port port if not the default. The additional
host:port arguments are useful for passing multiple ZooKeeper instances

Important

Backups can only be performed on databases which have the configuration parameter
enable_online_backup=true set. That will make the backup service available on the
default port (6362). To enable the backup service on a different port use for example
enable_online_backup=port=9999 instead.

8.1.1. Embedded and Server

To perform a backup from a running embedded or server database run:

Performing a full backup

Operations

47

./neo4j-backup -full -from single://192.168.1.34 -to /mnt/backup/neo4j-backup

Performing an incremental backup

./neo4j-backup -incremental -from single://192.168.1.34 -to /mnt/backup/neo4j-backup

Performing an incremental backup where the service is registered on a custom port

./neo4j-backup -incremental -from single://192.168.1.34:9999 -to /mnt/backup/neo4j-backup

8.1.2. High Availability

To perform a backup on an HA cluster you specify one or more ZooKeeper services managing that
cluster.

Performing a full backup from HA cluster, specifying two possible ZooKeeper services

./neo4j-backup -full -from ha://192.168.1.15:2181,192.168.1.16:2181 -to /mnt/backup/neo4j-backup

Performing an incremental backup from HA cluster, specifying only one ZooKeeper service

./neo4j-backup -incremental -from ha://192.168.1.15:2181 -to /mnt/backup/neo4j-backup

8.1.3. Restoring Your Data

The Neo4j backups are fully functional databases. To use a backup, all you need to do replace your
database folder with the backup.

8.2. Security
Neo4j in itself does not enforce security on the data level. However, there are different aspects that
should be considered when using Neo4j in different scenarios.

8.2.1. Securing access to the Neo4j Server

The Neo4j server currently does not enforce security on the REST access layer. This should be taken
care of by external means. We strongly recommend to front a running Neo4j Server with a proxy like
Apache mod_proxy 1. This provides a number of advantages:

• Control access to the Neo4j server to specific IP addresses, URL patterns and IP ranges. This can be
used to make for instance only the /db/data namespace accessible to non-local clients, while the /
db/admin URLs only respond to a specific IP address.

<Proxy *>

 Order Deny,Allow

 Deny from all

 Allow from 192.168.0

</Proxy>

• Run Neo4j Server as a non-root user on a Linux/Unix system on a port < 1000 (e.g. port 80) using

ProxyPass /neo4jdb/data http://localhost:7474/db/data

ProxyPassReverse /neo4jdb/data http://localhost:7474/db/data

• Simple load balancing in a clustered environment to load-balance read load using the Apache
mod_proxy_balancer 2 plugin

1http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

Operations

48

<Proxy balancer://mycluster>

BalancerMember http://192.168.1.50:80

BalancerMember http://192.168.1.51:80

</Proxy>

ProxyPass /test balancer://mycluster

8.3. Monitoring
Note

Most of the monitoring features are only available in the Advanced and Enterprise editions
of Neo4j.

In order to be able to continuously get an overview of the health of a Neo4j database, there are
different levels of monitoring facilities available.

8.3.1. JMX

How to connect to a Neo4j instance using JMX and JConsole

First, start your embedded database or the Neo4j Server, for instance using

$NEO4j_SERVER_HOME/bin/neo4j start

Now, start JConsole with

$JAVA_HOME/bin/jconsole

Connect to the process running your Neo4j database instance:

Figure 8.1. Connecting JConsole to the Neo4j Java process

Now, beside the MBeans exposed by the JVM, you will see an org.neo4j section in the MBeans tab.
Under that, you will have access to all the monitoring information exposed by Neo4j.

Operations

49

Figure 8.2. Neo4j MBeans View

How to connect to the JMX monitoring programmatically

In order to programmatically connect to the Neo4j JMX server, there are some convenience methods
in the Neo4j Management component to help you find out the most commonly used monitoring
attributes of Neo4j. For instance, the number of node IDs in use can be obtained with code like:

Neo4jManager manager = new Neo4jManager(graphDb.getManagementBean(Kernel.class));

long nodeIDsInUse = manager.getPrimitivesBean.getNumberOfNodeIdsInUse();

Once you have access to this information, you can use it to for instance expose the values to SNMP
[http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol] or other monitoring systems.

Reference of supported JMX MBeans

Table 8.1. MBeans exposed by the Neo4j Kernel

Name Description

org.neo4j:instance=kernel#0,name=Memory
Mapping

The status of Neo4j memory mapping

org.neo4j:instance=kernel#0,name=Locking Information about the Neo4j lock status

org.neo4j:instance=kernel#0,name=Transactions Information about the Neo4j transaction manager

org.neo4j:instance=kernel#0,name=Cache Information about the caching in Neo4j

org.neo4j:instance=kernel#0,name=Configuration The configuration parameters used to configure
Neo4j

org.neo4j:instance=kernel#0,name=Primitive
count

Estimates of the numbers of different kinds of
Neo4j primitives

org.neo4j:instance=kernel#0,name=XA
Resources

Information about the XA transaction manager

org.neo4j:instance=kernel#0,name=Store file
sizes

Information about the sizes of the different parts
of the Neo4j graph store

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Operations

50

Name Description

org.neo4j:instance=kernel#0,name=Kernel Information about the Neo4j kernel

org.neo4j:instance=kernel#0,name=High
Availability

Information an High Availability cluster, if
enabled.

Table 8.2. MBean Memory Mapping

Attribute Description Type

MemoryPools Get information about each pool of memory
mapped regions from store files with
memory mapping enabled

String

Table 8.3. MBean Locking

Attribute Description Type

NumberOfAdvertedDeadlocks The number of lock sequences that would
have lead to a deadlock situation that Neo4j
has detected and adverted (by throwing
DeadlockDetectedException).

Integer

Table 8.4. MBean Transactions

Attribute Description Type

NumberOfOpenTransactions The number of currently open transactions Integer

PeakNumberOfConcurrentTransactions The highest number of transactions ever
opened concurrently

Integer

NumberOfOpenedTransactions The total number started transactions Integer

NumberOfCommittedTransactions The total number of committed transactionss Integer

Table 8.5. MBean Cache

Attribute Description Type

CacheType The type of cache used by Neo4j String

NodeCacheSize The number of Nodes currently in cache Integer

RelationshipCacheSize The number of Relationships currently in
cache

Integer

clear() clear all caches function,
void

Table 8.6. MBean Configuration

Attribute Description Type

store_dir Relative path for where the Neo4j storage
directory is located

String

Operations

51

Attribute Description Type

rebuild_idgenerators_fast Use a quick approach for rebuilding the ID
generators. This give quicker recovery time,
but will limit the ability to reuse the space of
deleted entities.

String

logical_log Relative path for where the Neo4j logical
log is located

String

neostore. propertystore. db. index.

 keys. mapped_memory

The size to allocate for memory mapping the
store for property key strings

String

neostore. propertystore. db. strings.

 mapped_memory

The size to allocate for memory mapping the
string property store

String

neostore. propertystore. db. arrays.

 mapped_memory

The size to allocate for memory mapping the
array property store

String

neo_store Relative path for where the Neo4j storage
information file is located

String

neostore. relationshipstore. db.

 mapped_memory

The size to allocate for memory mapping the
relationship store

String

neostore. propertystore. db. index.

 mapped_memory

The size to allocate for memory mapping the
store for property key indexes

String

create Configuration attribute String

enable_remote_shell Enable a remote shell server which shell
clients can log in to

String

neostore. propertystore. db.

 mapped_memory

The size to allocate for memory mapping the
property value store

Integer

neostore. nodestore. db. mapped_memory The size to allocate for memory mapping the
node store

String

dir Configuration attribute String

Table 8.7. MBean Primitive count

Attribute Description Type

NumberOfNodeIdsInUse An estimation of the number of nodes used
in this Neo4j instance

Integer

NumberOfRelationshipIdsInUse An estimation of the number of relationships
used in this Neo4j instance

Integer

NumberOfPropertyIdsInUse An estimation of the number of properties
used in this Neo4j instance

Integer

NumberOfRelationshipTypeIdsInUse The number of relationship types used in
this Neo4j instance

Integer

Operations

52

Table 8.8. MBean XA Resources

Attribute Description Type

XaResources Information about all XA resources
managed by the transaction manager

String

Table 8.9. MBean Store file sizes

Attribute Description Type

TotalStoreSize The total disk space used by this Neo4j
instance, in bytes.

Integer

LogicalLogSize The amount of disk space used by the
current Neo4j logical log, in bytes.

Integer

ArrayStoreSize The amount of disk space used to store array
properties, in bytes.

Integer

NodeStoreSize The amount of disk space used to store
nodes, in bytes.

Integer

PropertyStoreSize The amount of disk space used to store
properties (excluding string values and array
values), in bytes.

Integer

RelationshipStoreSize The amount of disk space used to store
relationships, in bytes.

Integer

StringStoreSize The amount of disk space used to store
string properties, in bytes.

Integer

Table 8.10. MBean Kernel

Attribute Description Type

ReadOnly Whether this is a read only instance. boolean

MBeanQuery An ObjectName that can be used as a query
for getting all management beans for this
Neo4j instance.

String

KernelStartTime The time from which this Neo4j instance
was in operational mode

Date

StoreCreationDate The time when this Neo4j graph store was
created

Date

StoreId An identifier that uniquely identifies this
Neo4j graph store

String

StoreLogVersion The current version of the Neo4j store
logical log

String

KernelVersion The version of Neo4j String

StoreDirectory The location where the Neo4j store is
located

String

Operations

53

Table 8.11. MBean High Availability

Attribute Description Type

MachineId The cluster machine id of this instance String

Master True, if this Neo4j instance is currently
Master in the cluster

boolean

ConnectedSlaves A list of conencted slaves in this cluster String

InstancesInCluster Information about the other Neo4j instances
in this HA cluster

String

Part II. Tools

55

Chapter 9. Web Administration
The Neo4j Web Administration is the primary user interface for Neo4j. With it, you can:

• monitor the Neo4j Server

• manipulate and browse data

• interact with the database via a scripting environment

• view raw data management objects (JMX MBeans)

9.1. Dashboard tab
The Dashboard tab provides an overview of a running Neo4j instance.

Figure 9.1. Web Administration Dashboard

9.1.1. Entity chart

The charts show entity counts over time: node, relationship and properties.

Web Administration

56

Figure 9.2. Entity charting

9.1.2. Status monitoring

Below the entity chart is a collection of status panels, displaying current resource usage.

Figure 9.3. Status indicator panels

9.2. Data tab
Use the Data tab to browse, add or modify nodes, relationships and their properties.

Figure 9.4. Browsing and manipulating data

Web Administration

57

9.3. Console tab
The Console tab gives scripting access to the database via the Gremlin [http://gremlin.tinkerpop.com]
scripting engine.

Figure 9.5. Manipulating data with Gremlin

9.4. The JMX tab
The JMX tab provides raw access to all available management objects.

Figure 9.6. JMX Attributes

http://gremlin.tinkerpop.com
http://gremlin.tinkerpop.com

58

Chapter 10. Neo4j Shell
Neo4j shell is a command-line shell for browsing the graph, much like how the Unix shell along with
commands like cd, ls and pwd can be used to browse your local file system. It consists of two parts:

• a lightweight client that sends commands via RMI and

• a server that processes those commands and sends the result back to the client.

It’s a nice tool for development and debugging. This guide will show you how to get it going!

10.1. Starting the shell
When used together with Neo4j started as a server, simply issue the following at the command line:

./bin/neo4j-shell

For the full list of options, see the reference in the Shell manual page.

To connect to a running Neo4j database, use Section 10.1.4, “Read-only mode” for local databases
and see Section 10.1.1, “Enabling the shell server” for remote databases.

You need to make sure that the shell jar file is on the classpath when you start up your Neo4j instance.

10.1.1. Enabling the shell server

Shell is enabled from the configuration of the Neo4j kernel, see Section 4.2, “Server Configuration”.
Here’s some sample configurations:

Using default values

enable_remote_shell = true

...or specify custom port, use default values for the others

enable_remote_shell = port=1234

When using the Neo4j server, see Section 4.2, “Server Configuration” for how to add configuration
settings in that case.

There are two ways to start the shell, either by connecting to a remote shell server or by pointing it to
a Neo4j store path.

10.1.2. Connecting to a shell server

To start the shell and connect to a running server, run:

neo4j-shell

Alternatively supply -port and -name options depending on how the remote shell server was enabled.
Then you’ll get the shell prompt like this:

neo4j-sh (0)$

Neo4j Shell

59

10.1.3. Pointing the shell to a path

To start the shell by just pointing it to a Neo4j store path you run the shell jar file. Given that the right
neo4j-kernel-<version>.jar and jta jar files are in the same path as your neo4j-shell-<version>.jar file
you run it with:

$ neo4j-shell -path path/to/neo4j-db

10.1.4. Read-only mode

By issuing the -readonly switch when starting the shell with a store path, changes cannot be made to
the database during the session.

$ neo4j-shell -readonly -path path/to/neo4j-db

10.1.5. Run a command and then exit

It is possible to tell the shell to just start, execute a command and then exit. This opens up for uses of
background jobs and also handling of huge output of f.ex. an ''ls'' command where you then could pipe
the output to ''less'' or another reader of your choice, or even to a file. So some examples of usage:

$ neo4j-shell -c "cd -a 24 && set name Mattias"

$ neo4j-shell -c "trav -r KNOWS" | less

10.2. Passing options and arguments
Passing options and arguments to your commands is very similar to many CLI commands in an *nix
environment. Options are prefixed with a - and can contain one or more options. Some options expect
a value to be associated with it. Arguments are string values which aren’t prefixed with -. Let’s look
at ls as an example:

ls -r -f KNOWS:out -v 12345 will make a verbose listing of node 12345's outgoing relationships
of type KNOWS. The node id, 12345, is an argument to ls which tells it to do the listing on that node
instead of the current node (see pwd command). However a shorter version of this can be written:

ls -rfv KNOWS:out 12345. Here all three options are written together after a single - prefix. Even
though f is in the middle it gets associated with the KNOWS:out value. The reason for this is that the ls
command doesn’t expect any values associated with the r or v options. So, it can infer the right values
for the rights options.

10.3. Enum options
Some options expects a value which is one of the values in an enum, f.ex. direction part of
relationship type filtering where there’s INCOMING, OUTGOING and BOTH. All such values can be
supplied in an easier way. It’s enough that you write the start of the value and the interpreter will find
what you really meant. F.ex. out, in, i or even INCOMING.

10.4. Filters
Some commands makes use of filters for varying purposes. F.ex. -f in ls and in trav. A filter is
supplied as a json [http://www.json.org/] object (w/ or w/o the surrounding {} brackets. Both keys

http://www.json.org/
http://www.json.org/

Neo4j Shell

60

and values can contain regular expressions for a more flexible matching. An example of a filter could
be .*url.*:http.*neo4j.*,name:Neo4j. The filter option is also accompanied by the options -
i and -l which stands for ignore case (ignore casing of the characters) and loose matching (it’s
considered a match even if the filter value just matches a part of the compared value, not necessarily
the entire value). So for a case-insensitive, loose filter you can supply a filter with -f -i -l or -fil
for short.

10.5. Node titles
To make it easier to navigate your graph the shell can display a title for each node, f.ex. in ls -r. It
will display the relationships as well as the nodes on the other side of the relationships. The title is
displayed together with each node and its best suited property value from a list of property keys.

If you’re standing on a node which has two KNOWS relationships to other nodes it’d be difficult to
know which friend is which. The title feature addresses this by reading a list of property keys and
grabbing the first existing property value of those keys and displays it as a title for the node. So you
may specify a list (with or without regular expressions), f.ex: name,title.*,caption and the title
for each node will be the property value of the first existing key in that list. The list is defined by the
client (you) using the TITLE_KEYS environment variable and the default being .*name.*,.*title.*

10.6. How to use (individual commands)
The shell is modeled after Unix shells like bash that you use to walk around your local file system.
It has some of the same commands, like cd and ls. When you first start the shell (see instructions
above), you will get a list of all the available commands. Use man <command> to get more info about a
particular command. Some notes:

10.6.1. Current node/relationship and path
You have a current node/relationship and a "current path" (like a current working directory in bash)
that you’ve traversed so far. You start at the reference node [http://api.neo4j.org/current/org/neo4j/
graphdb/GraphDatabaseService.html#getReferenceNode()] and can then cd your way through the
graph (check your current path at any time with the pwd command). cd can be used in different ways:

• cd <node-id> will traverse one relationship to the supplied node id. The node must have a direct
relationship to the current node.

• cd -a <node-id> will do an absolute path change, which means the supplied node doesn’t have to
have a direct relationship to the current node.

• cd -r <relationship-id> will traverse to a relationship instead of a node. The relationship
must have the current node as either start or end point. To see the relationship ids use the ls -vr
command on nodes.

• cd -ar <relationship-id> will do an absolute path change which means the relationship can be
any relationship in the graph.

• cd will take you back to the reference node, where you started in the first place.

• cd .. will traverse back one step to the previous location, removing the last path item from your
current path (pwd).

http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html#getReferenceNode()
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html#getReferenceNode()
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html#getReferenceNode()

Neo4j Shell

61

• cd start (only if your current location is a relationship). Traverses to the start node of the
relationship.

• cd end (only if your current location is a relationship). Traverses to the end node of the
relationship.

10.6.2. Listing the contents of a node/relationship

List contents of the current node/relationship (or any other node) with the ls command. Please note
that it will give an empty output if the current node/relationship has no properties or relationships (for
example in the case of a brand new graph). ls can take a node id as argument as well as filters, see
Section 10.4, “Filters” and for information about how to specify direction see Section 10.3, “Enum
options”. Use man ls for more info.

10.6.3. Creating nodes and relationships

You create new nodes by connecting them with relationships to the current node. For example,
mkrel -t A_RELATIONSHIP_TYPE -d OUTGOING -c will create a new node (-c) and draw to it an
OUTGOING relationship of type A_RELATIONSHIP_TYPE from the current node. If you already have two
nodes which you’d like to draw a relationship between (without creating a new node) you can do for
example, mkrel -t A_RELATIONSHIP_TYPE -d OUTGOING -n <other-node-id> and it will just
create a new relationship between the current node and that other node.

10.6.4. Setting, renaming and removing properties

Property operations are done with the set, mv and rm commands. These commands operates on the
current node/relationship. * set <key> <value> with optionally the -t option (for value type) sets a
property. Supports every type of value that Neo4j supports. Examples of a property of type int:

$ set -t int age 29

And an example of setting a double[] property:

$ set -t double[] my_values [1.4,12.2,13]

• rm <key> removes a property.

• mv <key> <new-key> renames a property from one key to another.

10.6.5. Deleting nodes and relationships

Deleting nodes and relationships is done with the rmrel command. It focuses on deletion of
relationships, but a node can also be deleted if the deleted relationship leaves the opposite node
"stranded" (i.e. it no longer has any relationships drawn to it) ''and'' the -d options is supplied. See the
relationship ids with the ls -rv command.

10.6.6. Environment variables

The shell uses environment variables a-la bash to keep session information, such as the current path
and more. The commands for this mimics the bash commands export and env. For example you
can at anytime issue a export STACKTRACES=true command to set the STACKTRACES environment

Neo4j Shell

62

variable to true. This will then result in stacktraces being printed if an exception or error should
occur. List environment variables using env

10.6.7. Executing groovy/python scripts

The shell has support for executing scripts, such as Groovy [http://groovy.codehaus.org] and Python
[http://www.python.org] (via Jython [http://www.jython.org]). As of now the scripts (*.groovy, *.py)
must exist on the server side and gets called from a client with for example, gsh --renamePerson
1234 "Mathias" "Mattias" --doSomethingElse where the scripts renamePerson.groovy and
doSomethingElse.groovy must exist on the server side in any of the paths given by the GSH_PATH
environment variable (defaults to .:src:src/script). This variable is like the java classpath, separated by
a :. The python/jython scripts can be executed with the jsh in a similar fashion, however the scripts
have the .py extension and the environment variable for the paths is JSH_PATH.

When writing the scripts assume that there’s made available an args variable (a String[]) which
contains the supplied arguments. In the case of the renamePerson example above the array would
contain ["1234", "Mathias", "Mattias"]. Also please write your outputs to the out variable, such
as out.println("My tracing text") so that it will be printed at the shell client instead of the
server.

10.6.8. Traverse

You can traverse the graph with the trav command which allows for simple traversing from the
current node. You can supply which relationship types (w/ regex matching) and optionally direction
as well as property filters for matching nodes. In addition to that you can supply a command line to
execute for each match. An example: trav -o depth -r KNOWS:both,HAS_.*:incoming -c "ls
$n". Which means traverse depth first for relationships with type KNOWS disregarding direction and
incoming relationships with type matching HAS_.* and do a ls <matching node> for each match.
The node filtering is supplied with the -f option, see Section 10.4, “Filters”. See Section 10.3, “Enum
options” for the traversal order option. Even relationship types/directions are supplied using the same
format as filters.

10.6.9. Indexing

It’s possible to query and manipulate indexes via the index command. Example: index -i persons
name (will index the name for the current node or relationship in the "persons" index).

• -g will do exact lookup in the index and display hits. You can supply -c with a command to be
executed for each hit.

• -q will ask the index a query and display hits. You can supply -c with a command to be executed
for each hit.

• --cd will change current location to the hit from the query. It’s just a convenience for using the -c
option.

• --ls will do a listing of the contents for each hit. It’s just a convenience for using the -c option.

• -i will index a key-value pair in an index for the current node/relationship. If no value is given the
property value for that key for the current node is used as value.

http://groovy.codehaus.org
http://groovy.codehaus.org
http://www.python.org
http://www.python.org
http://www.jython.org
http://www.jython.org

Neo4j Shell

63

• -r will remove a key-value pair (if it exists) from an index for the current node/relationship. If no
value is given the property value for that key for the current node is used as value.

10.7. Extending the shell: Adding your own
commands

Of course the shell is extendable and has a generic core which has nothing to do with Neo4j… only
some of the commands [http://components.neo4j.org/neo4j-shell/1.4.M03/apidocs/org/neo4j/shell/
App.html] do.

So you say you’d like to start a Neo4j graph database [http://api.neo4j.org/current/org/neo4j/graphdb/
GraphDatabaseService.html], enable the remote shell and add your own apps to it so that your apps
and the standard Neo4j apps co-exist side by side? Well, here’s an example of how an app could look
like:

public class LsRelTypes extends GraphDatabaseApp

{

 @Override

 protected String exec(AppCommandParser parser, Session session, Output out)

 throws ShellException, RemoteException

 {

 GraphDatabaseService graphDb = getServer().getDb();

 out.println("Types:");

 for (RelationshipType type : graphDb.getRelationshipTypes())

 {

 out.println(type.name());

 }

 return null;

 }

}

You make your app discoverable via the Java Service API, so in a file e.g. src/main/resources/META-
INF/services/org.neo4j.shell.App include: org.my.domain.MyShellApp

And you could now use it in the shell by typing lsreltypes (its name is based on the class name).

If you’d like it to display some nice help information when using the help (or man) app, override the
getDescription method for a general description and use addValueType method to add descriptions
about (and logic to) the options you can supply when using your app.

Know that the apps reside server-side so if you have a running server and starts a remote client to it
from another JVM you can’t add your apps on the client.

http://components.neo4j.org/neo4j-shell/1.4.M03/apidocs/org/neo4j/shell/App.html
http://components.neo4j.org/neo4j-shell/1.4.M03/apidocs/org/neo4j/shell/App.html
http://components.neo4j.org/neo4j-shell/1.4.M03/apidocs/org/neo4j/shell/App.html
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html
http://api.neo4j.org/current/org/neo4j/graphdb/GraphDatabaseService.html

Part III. Troubleshooting

65

Chapter 11. Troubleshooting guide
Problem Cause Resolution

OutOfMemoryError Too large top level
transactions or leaking
transactions not finished
properly.

Split updates into smaller
transactions. Always make
sure transactions are finished
properly.

ResourceAcquisitionFailedException
or an error message containing the text
“The transaction is marked for rollback
only”

Leaked non finished
transaction tied to the current
thread in state marked for
rollback only.

Finish transactions properly.

DeadlockDetectedException Concurrent updates of
contended resources or
not finishing transactions
properly.

See Section 3.4,
“Deadlocks”.

66

Chapter 12. Community support
Get help from the Neo4j open source community, here are some starting points:

• Searchable user mailing list archive [http://www.mail-archive.com/user@lists.neo4j.org/info.html].

• User mailing list [https://lists.neo4j.org/mailman/listinfo/user].

• Neo4j wiki [http://wiki.neo4j.org/]

• IRC channel: irc://irc.freenode.net/neo4j

http://www.mail-archive.com/user@lists.neo4j.org/info.html
http://www.mail-archive.com/user@lists.neo4j.org/info.html
https://lists.neo4j.org/mailman/listinfo/user
https://lists.neo4j.org/mailman/listinfo/user
http://wiki.neo4j.org/
http://wiki.neo4j.org/
irc://irc.freenode.net/neo4j

67

Appendix A. Manpages
The Neo4j Unix manual pages are included on the following pages.

Manpages

68

Name
neo4j — Neo4j Server control and management

Synopsis

neo4j <command>

DESCRIPTION

Neo4j is a graph database, perfect for working with highly connected data.

COMMANDS

console
Start the server as an application, running as a foreground proces. Stop the server using CTRL-C.

start
Start server as daemon, running as a background process.

stop
Stops a running daemonized server.

restart
Restarts a running server.

condrestart
Restarts a server, but only if it was already running.

status
Current running state of the server

install
Installs the server as a platform-appropriate system service.

remove
Uninstalls the system service

dump
Displays thread dump, also saved to the wrapper.log

Usage - Windows

Neo4j.bat

Double-clicking on the Neo4j.bat script will start the server in a console. To quit, just press control-
C in the console window.

InstallNeo4j/UninstallNeo4j

Neo4j can be installed as a Windows Service, running without a console window. You’ll need to run
the scripts with Administrator priveleges. Just use either of these bat scripts:

Manpages

69

• InstallNeo4j - install as a Windows service

• will install and automatically start the service

• use the normal windows administrative controls for start/stop

• UninstallNeo4j - remove the Neo4j service

FILES

conf/neo4j-server.properties
Server configuration.

conf/neo4j-wrapper.conf
Configuration for service wrapper.

conf/neo4j.properties
Tuning configuration for the database.

Manpages

70

Name
neo4j-shell — a command-line tool for exploring and manipulating a graph database

Synopsis

neo4j-shell [REMOTE OPTIONS]

neo4j-shell [LOCAL OPTIONS]

DESCRIPTION

Neo4j shell is a command-line shell for browsing the graph, much like how the Unix shell along
with commands like cd, ls and pwd can be used to browse your local file system. The shell can
connect directly to a graph database on the file system. To access local a local database used by other
processes, use the readonly mode.

REMOTE OPTIONS

-port PORT
Port of host to connect to (default: 1337).

-host HOST
Domain name or IP of host to connect to (default: localhost).

-name NAME
RMI name, i.e. rmi://<host>:<port>/<name> (default: shell).

-readonly
Access the database in read-only mode. The read-only mode enables browsing a database that is
used by other processes.

LOCAL OPTIONS

-path PATH
The path to the database directory. If there is no database at the location, a new one will e created.

-pid PID
Process ID to connect to.

-readonly
Access the database in read-only mode. The read-only mode enables browsing a database that is
used by other processes.

-c COMMAND
Command line to execute. After executing it the shell exits.

-config CONFIG
The path to the Neo4j configuration file to be used.

Manpages

71

EXAMPLES

Examples for remote:

 neo4j-shell

 neo4j-shell -port 1337

 neo4j-shell -host 192.168.1.234 -port 1337 -name shell

 neo4j-shell -host localhost -readonly

Examples for local:

 neo4j-shell -path /path/to/db

 neo4j-shell -path /path/to/db -config /path/to/neo4j.config

 neo4j-shell -path /path/to/db -readonly

Manpages

72

Name
neo4j-coordinator — Neo4j Coordinator for High-Availability clusters

Synopsis

neo4j-coordinator <command>

DESCRIPTION

Neo4j Coordinator is a server which provides coordination for a Neo4j High Availability Data cluster.
A "coordination cluster" must be started and available before the "data cluster" can be started. This
server is a member of the cluster.

COMMANDS

console
Start the server as an application, running as a foreground proces. Stop the server using CTRL-C.

start
Start server as daemon, running as a background process.

stop
Stops a running daemonized server.

restart
Restarts a running server.

condrestart
Restarts a server, but only if it was already running.

status
Current running state of the server

install
Installs the server as a platform-appropriate system service.

remove
Uninstalls the system service

dump
Displays thread dump, also saved to the wrapper.log

FILES

conf/coord.cfg
Coordination server configuration.

conf/coord-wrapper.cfg
Configuration for service wrapper.

Manpages

73

data/coordinator/myid
Unique identifier for coordinator instance.

Manpages

74

Name
neo4j-coordinator-shell — Neo4j Coordinator Shell interactive interface

Synopsis

neo4j-coordinator-shell -server <host:port> [<cmd> <args>]

DESCRIPTION

Neo4j Coordinator Shell provides an interactive text-based interface to a running Neo4j Coordinator
server.

OPTIONS

-server HOST:PORT
Connects to a Neo4j Coordinator at the specified host and port.

	The Neo4j Manual
	Table of Contents
	Introduction
	1. Who should read this
	2. Neo4j highlights

	Part I. Reference Documentation
	Chapter 1. Installation & Deployment
	1.1. Deployment Scenarios
	1.1.1. Server
	1.1.2. Embedded

	1.2. System Requirements
	1.2.1. CPU
	1.2.2. Memory
	1.2.3. Disk
	1.2.4. Filesystem
	1.2.5. Software

	1.3. Installation
	1.3.1. Embedded Installation

	1.4. Upgrading
	1.4.1. Normal Upgrade
	1.4.2. Special Upgrade
	1.4.3. Upgrade 1.3.M03 –> 1.3.M04
	1.4.4. Upgrade 1.2 –> 1.3
	1.4.5. Upgrade 1.1 –> 1.2

	1.5. Usage Data Collector
	1.5.1. Technical Information
	1.5.2. How to disable UDC

	Chapter 2. Configuration & Performance
	2.1. Caches in Neo4j
	2.1.1. File buffer cache
	Configuration

	2.1.2. Object cache
	Configuration
	Heap memory usage

	2.2. JVM Settings
	2.2.1. Configuring heap size and GC

	2.3. Compressed storage of short strings

	Chapter 3. Transaction management
	3.1. Interaction cycle
	3.2. Isolation levels
	3.3. Default locking behavior
	3.4. Deadlocks
	3.5. Delete semantics

	Chapter 4. Neo4j Server
	4.1. Server Installation
	4.1.1. As a Windows service
	4.1.2. Linux Service
	4.1.3. Macintosh Service
	4.1.4. Multiple Server instances on one machine

	4.2. Server Configuration
	4.2.1. Important server configurations parameters
	4.2.2. Neo4j Database performance configuration
	4.2.3. Logging configuration
	4.2.4. Other configuration options
	Setting a custom Java command

	4.3. Setup for remote debugging
	4.4. Starting the Neo4j server in high availability mode
	4.4.1. Starting a Neo4j Coordinator
	4.4.2. Starting the Neo4j Server

	4.5. Server Plugins
	4.6. Tuning the server performance
	4.6.1. Specifying Neo4j tuning properties
	4.6.2. Specifying JVM tuning properties

	4.7. Unmanaged Extensions

	Chapter 5. Indexing
	5.1. Introduction
	5.2. Create
	5.3. Delete
	5.4. Add
	5.5. Remove
	5.6. Update
	5.7. Search
	5.7.1. Get
	5.7.2. Query

	5.8. Relationship indexes
	5.9. Scores
	5.10. Configuration and fulltext indexes
	5.11. Extra features for Lucene indexes
	5.11.1. Numeric ranges
	5.11.2. Sorting
	5.11.3. Querying with Lucene Query objects
	5.11.4. Compound queries
	5.11.5. Default operator
	5.11.6. Caching

	5.12. Batch insertion
	5.12.1. Best practices

	Chapter 6. Graph Algorithms
	6.1. Introduction
	6.2. Path finding examples

	Chapter 7. High Availability
	7.1. Architecture
	7.2. Setup and configuration
	7.2.1. Small
	7.2.2. Medium
	7.2.3. Large
	7.2.4. Installation Notes

	7.3. How Neo4j HA operates

	Chapter 8. Operations
	8.1. Backup
	8.1.1. Embedded and Server
	8.1.2. High Availability
	8.1.3. Restoring Your Data

	8.2. Security
	8.2.1. Securing access to the Neo4j Server

	8.3. Monitoring
	8.3.1. JMX
	How to connect to a Neo4j instance using JMX and JConsole
	How to connect to the JMX monitoring programmatically
	Reference of supported JMX MBeans

	Part II. Tools
	Chapter 9. Web Administration
	9.1. Dashboard tab
	9.1.1. Entity chart
	9.1.2. Status monitoring

	9.2. Data tab
	9.3. Console tab
	9.4. The JMX tab

	Chapter 10. Neo4j Shell
	10.1. Starting the shell
	10.1.1. Enabling the shell server
	10.1.2. Connecting to a shell server
	10.1.3. Pointing the shell to a path
	10.1.4. Read-only mode
	10.1.5. Run a command and then exit

	10.2. Passing options and arguments
	10.3. Enum options
	10.4. Filters
	10.5. Node titles
	10.6. How to use (individual commands)
	10.6.1. Current node/relationship and path
	10.6.2. Listing the contents of a node/relationship
	10.6.3. Creating nodes and relationships
	10.6.4. Setting, renaming and removing properties
	10.6.5. Deleting nodes and relationships
	10.6.6. Environment variables
	10.6.7. Executing groovy/python scripts
	10.6.8. Traverse
	10.6.9. Indexing

	10.7. Extending the shell: Adding your own commands

	Part III. Troubleshooting
	Chapter 11. Troubleshooting guide
	Chapter 12. Community support

	Appendix A. Manpages
	neo4j
	neo4j-shell
	neo4j-coordinator
	neo4j-coordinator-shell

